Skip to content

vllm.model_executor.models.gemma3_mm

Gemma3ImageInputs module-attribute

Gemma3ImageInputs = Gemma3ImagePixelInputs

logger module-attribute

logger = init_logger(__name__)

Gemma3DummyInputsBuilder

Bases: BaseDummyInputsBuilder[Gemma3ProcessingInfo]

Source code in vllm/model_executor/models/gemma3_mm.py
class Gemma3DummyInputsBuilder(BaseDummyInputsBuilder[Gemma3ProcessingInfo]):

    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_images = mm_counts.get("image", 0)

        processor = self.info.get_hf_processor()
        image_token = processor.boi_token

        return image_token * num_images

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> MultiModalDataDict:
        num_images = mm_counts.get("image", 0)

        target_width, target_height = \
            self.info.get_image_size_with_most_features()

        return {
            "image":
            self._get_dummy_images(width=target_width,
                                   height=target_height,
                                   num_images=num_images)
        }

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/gemma3_mm.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
    num_images = mm_counts.get("image", 0)

    target_width, target_height = \
        self.info.get_image_size_with_most_features()

    return {
        "image":
        self._get_dummy_images(width=target_width,
                               height=target_height,
                               num_images=num_images)
    }

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/gemma3_mm.py
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
    num_images = mm_counts.get("image", 0)

    processor = self.info.get_hf_processor()
    image_token = processor.boi_token

    return image_token * num_images

Gemma3ForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsPP, SupportsLoRA

Source code in vllm/model_executor/models/gemma3_mm.py
@MULTIMODAL_REGISTRY.register_processor(Gemma3MultiModalProcessor,
                                        info=Gemma3ProcessingInfo,
                                        dummy_inputs=Gemma3DummyInputsBuilder)
class Gemma3ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
                                     SupportsLoRA):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            # mapping for new names in checkpoint saved after transformers v4.52
            "model.language_model.": "language_model.model.",
            "model.vision_tower.": "vision_tower.",
            "model.multi_modal_projector.": "multi_modal_projector.",
            "lm_head.": "language_model.lm_head.",
        })

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("image"):
            return "<start_of_image>"

        raise ValueError("Only image modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config
        self.config = config
        self.quant_config = quant_config
        self.multimodal_config = multimodal_config
        self.sliding_window = getattr(config.text_config,
                                      "interleaved_sliding_window", None)

        self.vision_tower = SiglipVisionModel(config.vision_config,
                                              quant_config,
                                              prefix=maybe_prefix(
                                                  prefix, "vision_tower"))
        self.multi_modal_projector = Gemma3MultiModalProjector(config)

        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=config.text_config,
            prefix=maybe_prefix(prefix, "language_model"),
            architectures=["Gemma3ForCausalLM"],
        )
        logit_scale = getattr(config, "logit_scale", 1.0)
        self.language_model.logits_processor.scale *= logit_scale

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors)

    @property
    def dtype(self):
        return next(self.parameters()).dtype

    def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
        image_size = self.config.vision_config.image_size
        expected_dims = (3, image_size, image_size)
        if data.shape[1:] != expected_dims:
            raise ValueError(
                "The expected shape of pixel values per image per batch is "
                f"{expected_dims}. You supplied {tuple(data.shape)}.")
        return data

    def _parse_and_validate_image_input(
            self, **kwargs: object) -> Optional[Gemma3ImageInputs]:
        pixel_values = kwargs.pop("pixel_values", None)
        num_crops = kwargs.pop("num_crops", None)
        image_embeds = kwargs.pop("image_embeds", None)
        assert image_embeds is None, "Gemma3 does not support image_embeds."
        if pixel_values is None:
            return None

        if not isinstance(pixel_values, (torch.Tensor, list)):
            raise ValueError("Incorrect type of pixel values. "
                             f"Got type: {type(pixel_values)}")

        if not isinstance(num_crops, (torch.Tensor, list)):
            raise ValueError("Incorrect type of num_crops. "
                             f"Got type: {type(num_crops)}")

        pixel_values = flatten_bn(pixel_values, concat=True)
        num_crops = flatten_bn(num_crops, concat=True)

        return Gemma3ImagePixelInputs(
            type="pixel_values",
            pixel_values=self._validate_pixel_values(pixel_values),
            num_patches=num_crops + 1,
        )

    def _image_pixels_to_features(
        self,
        vision_tower: SiglipVisionModel,
        pixel_values: torch.Tensor,
    ) -> torch.Tensor:
        return vision_tower(pixel_values)

    def _process_image_input(
        self,
        image_input: Gemma3ImageInputs,
    ) -> list[torch.Tensor]:
        assert self.vision_tower is not None

        pixel_values = image_input["pixel_values"]
        num_patches = image_input["num_patches"]

        image_features = self._image_pixels_to_features(
            self.vision_tower,
            pixel_values,
        )
        image_embeds = self.multi_modal_projector(image_features)

        return [
            e.flatten(0, 1) for e in image_embeds.split(num_patches.tolist())
        ]

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def get_multimodal_embeddings(self,
                                  **kwargs: object) -> MultiModalEmbeddings:
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return []

        return self._process_image_input(image_input)

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:
        inputs_embeds = self.language_model.get_input_embeddings(input_ids)
        if multimodal_embeddings is not None \
            and len(multimodal_embeddings) != 0:
            inputs_embeds = merge_multimodal_embeddings(
                input_ids,
                inputs_embeds,
                multimodal_embeddings,
                self.config.image_token_index,
            )
        return inputs_embeds

    def forward(self,
                input_ids: torch.Tensor,
                positions: torch.Tensor,
                intermediate_tensors: Optional[IntermediateTensors] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                **kwargs: object) -> IntermediateTensors:
        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner, this
        # condition is for v0 compatibility.
        elif inputs_embeds is None:
            vision_embeddings = self.get_multimodal_embeddings(**kwargs)

            inputs_embeds = self.get_input_embeddings(input_ids,
                                                      vision_embeddings)
            if vision_embeddings is not None:
                kwargs = self.prepare_attn_masks(
                    input_ids,
                    positions,
                    mask_dtype=self.dtype,
                    **kwargs,
                )
            input_ids = None

        hidden_states = self.language_model.model(input_ids,
                                                  positions,
                                                  intermediate_tensors,
                                                  inputs_embeds=inputs_embeds,
                                                  **kwargs)

        return hidden_states

    def prepare_attn_masks(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        mask_dtype: torch.dtype,
        **kwargs,
    ):
        kwargs["has_images"] = True
        # NOTE(woosuk): Here, we distinguish the sequences by the position id 0.
        # This is a HACK. Fix this.
        start_indices = (positions == 0).cpu().nonzero()
        num_seqs = len(start_indices)
        seq_lens = []
        for i in range(num_seqs):
            start_idx = start_indices[i].item()
            if i < num_seqs - 1:
                end_idx = start_indices[i + 1].item()
            else:
                end_idx = len(input_ids)
            seq_lens.append(end_idx - start_idx)
        kwargs["seq_lens"] = seq_lens

        global_attn_masks = []
        local_attn_masks = []
        start_idx = 0
        for seq_len in seq_lens:
            end_idx = start_idx + seq_len
            input_token_ids = input_ids[start_idx:end_idx]
            start_idx = end_idx
            # Create a global causal mask.
            global_attn_mask = torch.empty(
                1,
                1,
                seq_len,
                seq_len,
                dtype=mask_dtype,
                device=input_ids.device,
            )
            global_attn_mask.fill_(float("-inf"))
            # Fill the lower triangle with 0.
            global_attn_mask = global_attn_mask.triu(diagonal=1)

            # Consider the bidirectional attention between image tokens.
            img_mask = torch.zeros_like(global_attn_mask)
            img_pos = (input_token_ids == self.config.image_token_index)
            img_mask[:, :, :, img_pos] += 1
            img_mask[:, :, img_pos, :] += 1
            global_attn_mask = torch.where(img_mask == 2, 0, global_attn_mask)
            global_attn_masks.append(global_attn_mask)

            if self.sliding_window is not None:
                # Create a local causal mask with sliding window (1024).
                local_attn_mask = torch.ones_like(global_attn_mask)
                local_attn_mask = torch.tril(local_attn_mask,
                                             diagonal=-self.sliding_window)
                local_attn_mask = torch.where(local_attn_mask == 0,
                                              global_attn_mask, float("-inf"))
                local_attn_masks.append(local_attn_mask)
        kwargs["global_attn_masks"] = global_attn_masks
        kwargs["local_attn_masks"] = local_attn_masks
        return kwargs

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states,
                                                  sampling_metadata)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

    def get_mm_mapping(self) -> MultiModelKeys:
        """
        Get the module prefix in multimodal models
        """
        return MultiModelKeys.from_string_field(
            language_model="language_model",
            connector="multi_modal_projector",
            tower_model="vision_tower")

config instance-attribute

config = config

dtype property

dtype

hf_to_vllm_mapper class-attribute instance-attribute

hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={
        "model.language_model.": "language_model.model.",
        "model.vision_tower.": "vision_tower.",
        "model.multi_modal_projector.": "multi_modal_projector.",
        "lm_head.": "language_model.lm_head.",
    }
)

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    hf_config=text_config,
    prefix=maybe_prefix(prefix, "language_model"),
    architectures=["Gemma3ForCausalLM"],
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

multi_modal_projector instance-attribute

multi_modal_projector = Gemma3MultiModalProjector(config)

multimodal_config instance-attribute

multimodal_config = multimodal_config

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

quant_config instance-attribute

quant_config = quant_config

sliding_window instance-attribute

sliding_window = getattr(
    text_config, "interleaved_sliding_window", None
)

vision_tower instance-attribute

vision_tower = SiglipVisionModel(
    vision_config,
    quant_config,
    prefix=maybe_prefix(prefix, "vision_tower"),
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gemma3_mm.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    multimodal_config = vllm_config.model_config.multimodal_config
    self.config = config
    self.quant_config = quant_config
    self.multimodal_config = multimodal_config
    self.sliding_window = getattr(config.text_config,
                                  "interleaved_sliding_window", None)

    self.vision_tower = SiglipVisionModel(config.vision_config,
                                          quant_config,
                                          prefix=maybe_prefix(
                                              prefix, "vision_tower"))
    self.multi_modal_projector = Gemma3MultiModalProjector(config)

    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        hf_config=config.text_config,
        prefix=maybe_prefix(prefix, "language_model"),
        architectures=["Gemma3ForCausalLM"],
    )
    logit_scale = getattr(config, "logit_scale", 1.0)
    self.language_model.logits_processor.scale *= logit_scale

    self.make_empty_intermediate_tensors = (
        self.language_model.make_empty_intermediate_tensors)

_image_pixels_to_features

_image_pixels_to_features(
    vision_tower: SiglipVisionModel, pixel_values: Tensor
) -> Tensor
Source code in vllm/model_executor/models/gemma3_mm.py
def _image_pixels_to_features(
    self,
    vision_tower: SiglipVisionModel,
    pixel_values: torch.Tensor,
) -> torch.Tensor:
    return vision_tower(pixel_values)

_parse_and_validate_image_input

_parse_and_validate_image_input(
    **kwargs: object,
) -> Optional[Gemma3ImageInputs]
Source code in vllm/model_executor/models/gemma3_mm.py
def _parse_and_validate_image_input(
        self, **kwargs: object) -> Optional[Gemma3ImageInputs]:
    pixel_values = kwargs.pop("pixel_values", None)
    num_crops = kwargs.pop("num_crops", None)
    image_embeds = kwargs.pop("image_embeds", None)
    assert image_embeds is None, "Gemma3 does not support image_embeds."
    if pixel_values is None:
        return None

    if not isinstance(pixel_values, (torch.Tensor, list)):
        raise ValueError("Incorrect type of pixel values. "
                         f"Got type: {type(pixel_values)}")

    if not isinstance(num_crops, (torch.Tensor, list)):
        raise ValueError("Incorrect type of num_crops. "
                         f"Got type: {type(num_crops)}")

    pixel_values = flatten_bn(pixel_values, concat=True)
    num_crops = flatten_bn(num_crops, concat=True)

    return Gemma3ImagePixelInputs(
        type="pixel_values",
        pixel_values=self._validate_pixel_values(pixel_values),
        num_patches=num_crops + 1,
    )

_process_image_input

_process_image_input(
    image_input: Gemma3ImageInputs,
) -> list[Tensor]
Source code in vllm/model_executor/models/gemma3_mm.py
def _process_image_input(
    self,
    image_input: Gemma3ImageInputs,
) -> list[torch.Tensor]:
    assert self.vision_tower is not None

    pixel_values = image_input["pixel_values"]
    num_patches = image_input["num_patches"]

    image_features = self._image_pixels_to_features(
        self.vision_tower,
        pixel_values,
    )
    image_embeds = self.multi_modal_projector(image_features)

    return [
        e.flatten(0, 1) for e in image_embeds.split(num_patches.tolist())
    ]

_validate_pixel_values

_validate_pixel_values(data: Tensor) -> Tensor
Source code in vllm/model_executor/models/gemma3_mm.py
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
    image_size = self.config.vision_config.image_size
    expected_dims = (3, image_size, image_size)
    if data.shape[1:] != expected_dims:
        raise ValueError(
            "The expected shape of pixel values per image per batch is "
            f"{expected_dims}. You supplied {tuple(data.shape)}.")
    return data

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/gemma3_mm.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    return self.language_model.compute_logits(hidden_states,
                                              sampling_metadata)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> IntermediateTensors
Source code in vllm/model_executor/models/gemma3_mm.py
def forward(self,
            input_ids: torch.Tensor,
            positions: torch.Tensor,
            intermediate_tensors: Optional[IntermediateTensors] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            **kwargs: object) -> IntermediateTensors:
    if intermediate_tensors is not None:
        inputs_embeds = None

    # NOTE: In v1, inputs_embeds is always generated at model runner, this
    # condition is for v0 compatibility.
    elif inputs_embeds is None:
        vision_embeddings = self.get_multimodal_embeddings(**kwargs)

        inputs_embeds = self.get_input_embeddings(input_ids,
                                                  vision_embeddings)
        if vision_embeddings is not None:
            kwargs = self.prepare_attn_masks(
                input_ids,
                positions,
                mask_dtype=self.dtype,
                **kwargs,
            )
        input_ids = None

    hidden_states = self.language_model.model(input_ids,
                                              positions,
                                              intermediate_tensors,
                                              inputs_embeds=inputs_embeds,
                                              **kwargs)

    return hidden_states

get_input_embeddings

get_input_embeddings(
    input_ids: Tensor,
    multimodal_embeddings: Optional[
        MultiModalEmbeddings
    ] = None,
) -> Tensor
Source code in vllm/model_executor/models/gemma3_mm.py
def get_input_embeddings(
    self,
    input_ids: torch.Tensor,
    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
    inputs_embeds = self.language_model.get_input_embeddings(input_ids)
    if multimodal_embeddings is not None \
        and len(multimodal_embeddings) != 0:
        inputs_embeds = merge_multimodal_embeddings(
            input_ids,
            inputs_embeds,
            multimodal_embeddings,
            self.config.image_token_index,
        )
    return inputs_embeds

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/gemma3_mm.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_mm_mapping

get_mm_mapping() -> MultiModelKeys

Get the module prefix in multimodal models

Source code in vllm/model_executor/models/gemma3_mm.py
def get_mm_mapping(self) -> MultiModelKeys:
    """
    Get the module prefix in multimodal models
    """
    return MultiModelKeys.from_string_field(
        language_model="language_model",
        connector="multi_modal_projector",
        tower_model="vision_tower")

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/gemma3_mm.py
def get_multimodal_embeddings(self,
                              **kwargs: object) -> MultiModalEmbeddings:
    image_input = self._parse_and_validate_image_input(**kwargs)
    if image_input is None:
        return []

    return self._process_image_input(image_input)

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> Optional[str]
Source code in vllm/model_executor/models/gemma3_mm.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
    if modality.startswith("image"):
        return "<start_of_image>"

    raise ValueError("Only image modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/gemma3_mm.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

prepare_attn_masks

prepare_attn_masks(
    input_ids: Tensor,
    positions: Tensor,
    mask_dtype: dtype,
    **kwargs,
)
Source code in vllm/model_executor/models/gemma3_mm.py
def prepare_attn_masks(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    mask_dtype: torch.dtype,
    **kwargs,
):
    kwargs["has_images"] = True
    # NOTE(woosuk): Here, we distinguish the sequences by the position id 0.
    # This is a HACK. Fix this.
    start_indices = (positions == 0).cpu().nonzero()
    num_seqs = len(start_indices)
    seq_lens = []
    for i in range(num_seqs):
        start_idx = start_indices[i].item()
        if i < num_seqs - 1:
            end_idx = start_indices[i + 1].item()
        else:
            end_idx = len(input_ids)
        seq_lens.append(end_idx - start_idx)
    kwargs["seq_lens"] = seq_lens

    global_attn_masks = []
    local_attn_masks = []
    start_idx = 0
    for seq_len in seq_lens:
        end_idx = start_idx + seq_len
        input_token_ids = input_ids[start_idx:end_idx]
        start_idx = end_idx
        # Create a global causal mask.
        global_attn_mask = torch.empty(
            1,
            1,
            seq_len,
            seq_len,
            dtype=mask_dtype,
            device=input_ids.device,
        )
        global_attn_mask.fill_(float("-inf"))
        # Fill the lower triangle with 0.
        global_attn_mask = global_attn_mask.triu(diagonal=1)

        # Consider the bidirectional attention between image tokens.
        img_mask = torch.zeros_like(global_attn_mask)
        img_pos = (input_token_ids == self.config.image_token_index)
        img_mask[:, :, :, img_pos] += 1
        img_mask[:, :, img_pos, :] += 1
        global_attn_mask = torch.where(img_mask == 2, 0, global_attn_mask)
        global_attn_masks.append(global_attn_mask)

        if self.sliding_window is not None:
            # Create a local causal mask with sliding window (1024).
            local_attn_mask = torch.ones_like(global_attn_mask)
            local_attn_mask = torch.tril(local_attn_mask,
                                         diagonal=-self.sliding_window)
            local_attn_mask = torch.where(local_attn_mask == 0,
                                          global_attn_mask, float("-inf"))
            local_attn_masks.append(local_attn_mask)
    kwargs["global_attn_masks"] = global_attn_masks
    kwargs["local_attn_masks"] = local_attn_masks
    return kwargs

Gemma3ImagePixelInputs

Bases: TypedDict

Source code in vllm/model_executor/models/gemma3_mm.py
class Gemma3ImagePixelInputs(TypedDict):
    type: Literal["pixel_values"]
    pixel_values: torch.Tensor
    """
    Shape: `(num_patches_total, num_channels, height, width)`

    `num_patches_total` is the total number of patches
    over each image over each prompt in the batch.
    """

    num_patches: torch.Tensor
    """Shape: `(batch_size * num_images)`"""

num_patches instance-attribute

num_patches: Tensor

Shape: (batch_size * num_images)

pixel_values instance-attribute

pixel_values: Tensor

Shape: (num_patches_total, num_channels, height, width)

num_patches_total is the total number of patches over each image over each prompt in the batch.

type instance-attribute

type: Literal['pixel_values']

Gemma3MultiModalProcessor

Bases: BaseMultiModalProcessor[Gemma3ProcessingInfo]

Source code in vllm/model_executor/models/gemma3_mm.py
class Gemma3MultiModalProcessor(BaseMultiModalProcessor[Gemma3ProcessingInfo]):

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        processed_outputs = super()._call_hf_processor(
            prompt,
            mm_data,
            mm_kwargs,
            tok_kwargs,
        )

        # HF processor pops the `num_crops` kwarg, which is needed by vLLM
        if (images := mm_data.get("images")) is not None:
            parsed_images = (self._get_data_parser().parse_mm_data({
                "image":
                images
            }).get_items("image", ImageProcessorItems))
            image_sizes = [
                parsed_images.get_image_size(i)
                for i in range(len(parsed_images))
            ]
            hf_processor = self.info.get_hf_processor(**mm_kwargs)

            num_crops = [
                self.info.get_num_crops(image_width=size.width,
                                        image_height=size.height,
                                        processor=hf_processor)
                for size in image_sizes
            ]
            processed_outputs["num_crops"] = torch.tensor(num_crops)

        return processed_outputs

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        num_crops = hf_inputs.get("num_crops", torch.empty(0))

        return dict(
            pixel_values=MultiModalFieldConfig.flat_from_sizes(
                "image", num_crops + 1),
            num_crops=MultiModalFieldConfig.batched("image"),
        )

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, Any],
        out_mm_kwargs: MultiModalKwargs,
    ) -> Sequence[PromptUpdate]:
        hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
        image_token = hf_processor.boi_token

        def get_replacement_gemma3(item_idx: int):
            images = mm_items.get_items("image", ImageProcessorItems)

            image_size = images.get_image_size(item_idx)
            return self.info.get_image_repl(
                image_width=image_size.width,
                image_height=image_size.height,
                processor=hf_processor,
            )

        return [
            PromptReplacement(
                modality="image",
                target=image_token,
                replacement=get_replacement_gemma3,
            )
        ]

    def _apply_token_matches(
        self,
        prompt: list[int],
        mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
        mm_item_counts: Mapping[str, int],
    ) -> list[int]:
        token_ids = super()._apply_token_matches(
            prompt,
            mm_matches,
            mm_item_counts,
        )

        # "\n\n\n" and "\n\n\n\n" are single tokens
        # Since our replacement can insert "\n\n" next to "\n"
        # tokens, we have to combine them to be consistent with
        # the output of the tokenizer
        tokenizer = self.info.get_tokenizer()
        vocab = tokenizer.get_vocab()
        newline_1 = vocab["\n"]
        newline_2 = vocab["\n\n"]
        newline_3 = vocab["\n\n\n"]
        newline_4 = vocab["\n\n\n\n"]

        token_ids = replace_token_matches(
            token_ids,
            [newline_1, newline_2],
            [newline_3],
        )
        token_ids = replace_token_matches(
            token_ids,
            [newline_2, newline_1],
            [newline_3],
        )
        token_ids = replace_token_matches(
            token_ids,
            [newline_2, newline_2],
            [newline_4],
        )

        return token_ids

    def _find_mm_placeholders(
        self,
        mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
        new_token_ids: list[int],
        mm_item_counts: Mapping[str, int],
    ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
        # We need to detect "\n\n" inside "\n\n\n" and "\n\n\n\n"
        tokenizer = self.info.get_tokenizer()
        vocab = tokenizer.get_vocab()
        newline_1 = vocab["\n"]
        newline_2 = vocab["\n\n"]
        newline_3 = vocab["\n\n\n"]
        newline_4 = vocab["\n\n\n\n"]

        def get_repl_toks(tok: int) -> list[int]:
            if tok == newline_3:
                return [newline_1, newline_2]
            if tok == newline_4:
                return [newline_2, newline_2]

            return [tok]

        repl_token_ids = list[int]()
        repl_orig_idxs = list[int]()
        for orig_idx, orig_tok in enumerate(new_token_ids):
            repl_toks = get_repl_toks(orig_tok)
            repl_token_ids.extend(repl_toks)
            repl_orig_idxs.extend(orig_idx for _ in range(len(repl_toks)))

        repls = find_mm_placeholders(mm_prompt_updates, repl_token_ids,
                                     mm_item_counts)

        return {
            modality: [
                PlaceholderFeaturesInfo(
                    modality=p.modality,
                    item_idx=p.item_idx,
                    start_idx=repl_orig_idxs[p.start_idx],
                    tokens=p.tokens,
                    is_embed=p.is_embed,
                ) for p in placeholders
            ]
            for modality, placeholders in repls.items()
        }

_apply_token_matches

_apply_token_matches(
    prompt: list[int],
    mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
    mm_item_counts: Mapping[str, int],
) -> list[int]
Source code in vllm/model_executor/models/gemma3_mm.py
def _apply_token_matches(
    self,
    prompt: list[int],
    mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
    mm_item_counts: Mapping[str, int],
) -> list[int]:
    token_ids = super()._apply_token_matches(
        prompt,
        mm_matches,
        mm_item_counts,
    )

    # "\n\n\n" and "\n\n\n\n" are single tokens
    # Since our replacement can insert "\n\n" next to "\n"
    # tokens, we have to combine them to be consistent with
    # the output of the tokenizer
    tokenizer = self.info.get_tokenizer()
    vocab = tokenizer.get_vocab()
    newline_1 = vocab["\n"]
    newline_2 = vocab["\n\n"]
    newline_3 = vocab["\n\n\n"]
    newline_4 = vocab["\n\n\n\n"]

    token_ids = replace_token_matches(
        token_ids,
        [newline_1, newline_2],
        [newline_3],
    )
    token_ids = replace_token_matches(
        token_ids,
        [newline_2, newline_1],
        [newline_3],
    )
    token_ids = replace_token_matches(
        token_ids,
        [newline_2, newline_2],
        [newline_4],
    )

    return token_ids

_call_hf_processor

_call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/gemma3_mm.py
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature:
    processed_outputs = super()._call_hf_processor(
        prompt,
        mm_data,
        mm_kwargs,
        tok_kwargs,
    )

    # HF processor pops the `num_crops` kwarg, which is needed by vLLM
    if (images := mm_data.get("images")) is not None:
        parsed_images = (self._get_data_parser().parse_mm_data({
            "image":
            images
        }).get_items("image", ImageProcessorItems))
        image_sizes = [
            parsed_images.get_image_size(i)
            for i in range(len(parsed_images))
        ]
        hf_processor = self.info.get_hf_processor(**mm_kwargs)

        num_crops = [
            self.info.get_num_crops(image_width=size.width,
                                    image_height=size.height,
                                    processor=hf_processor)
            for size in image_sizes
        ]
        processed_outputs["num_crops"] = torch.tensor(num_crops)

    return processed_outputs

_find_mm_placeholders

_find_mm_placeholders(
    mm_prompt_updates: Mapping[
        str, Sequence[BoundPromptUpdate]
    ],
    new_token_ids: list[int],
    mm_item_counts: Mapping[str, int],
) -> Mapping[str, list[PlaceholderFeaturesInfo]]
Source code in vllm/model_executor/models/gemma3_mm.py
def _find_mm_placeholders(
    self,
    mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
    new_token_ids: list[int],
    mm_item_counts: Mapping[str, int],
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
    # We need to detect "\n\n" inside "\n\n\n" and "\n\n\n\n"
    tokenizer = self.info.get_tokenizer()
    vocab = tokenizer.get_vocab()
    newline_1 = vocab["\n"]
    newline_2 = vocab["\n\n"]
    newline_3 = vocab["\n\n\n"]
    newline_4 = vocab["\n\n\n\n"]

    def get_repl_toks(tok: int) -> list[int]:
        if tok == newline_3:
            return [newline_1, newline_2]
        if tok == newline_4:
            return [newline_2, newline_2]

        return [tok]

    repl_token_ids = list[int]()
    repl_orig_idxs = list[int]()
    for orig_idx, orig_tok in enumerate(new_token_ids):
        repl_toks = get_repl_toks(orig_tok)
        repl_token_ids.extend(repl_toks)
        repl_orig_idxs.extend(orig_idx for _ in range(len(repl_toks)))

    repls = find_mm_placeholders(mm_prompt_updates, repl_token_ids,
                                 mm_item_counts)

    return {
        modality: [
            PlaceholderFeaturesInfo(
                modality=p.modality,
                item_idx=p.item_idx,
                start_idx=repl_orig_idxs[p.start_idx],
                tokens=p.tokens,
                is_embed=p.is_embed,
            ) for p in placeholders
        ]
        for modality, placeholders in repls.items()
    }

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/gemma3_mm.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    num_crops = hf_inputs.get("num_crops", torch.empty(0))

    return dict(
        pixel_values=MultiModalFieldConfig.flat_from_sizes(
            "image", num_crops + 1),
        num_crops=MultiModalFieldConfig.batched("image"),
    )

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, Any],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/gemma3_mm.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, Any],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
    hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
    image_token = hf_processor.boi_token

    def get_replacement_gemma3(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)

        image_size = images.get_image_size(item_idx)
        return self.info.get_image_repl(
            image_width=image_size.width,
            image_height=image_size.height,
            processor=hf_processor,
        )

    return [
        PromptReplacement(
            modality="image",
            target=image_token,
            replacement=get_replacement_gemma3,
        )
    ]

Gemma3MultiModalProjector

Bases: Module

Source code in vllm/model_executor/models/gemma3_mm.py
class Gemma3MultiModalProjector(nn.Module):

    def __init__(self, config: Gemma3Config):
        super().__init__()

        self.mm_input_projection_weight = nn.Parameter(
            torch.zeros(config.vision_config.hidden_size,
                        config.text_config.hidden_size))

        self.mm_soft_emb_norm = GemmaRMSNorm(
            config.vision_config.hidden_size,
            eps=config.vision_config.layer_norm_eps)

        self.patches_per_image = int(config.vision_config.image_size //
                                     config.vision_config.patch_size)
        self.tokens_per_side = int(config.mm_tokens_per_image**0.5)
        self.kernel_size = self.patches_per_image // self.tokens_per_side
        self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size,
                                     stride=self.kernel_size)

    def forward(self, vision_outputs: torch.Tensor):
        batch_size, _, seq_length = vision_outputs.shape

        reshaped_vision_outputs = vision_outputs.transpose(1, 2)
        reshaped_vision_outputs = reshaped_vision_outputs.reshape(
            batch_size, seq_length, self.patches_per_image,
            self.patches_per_image)
        reshaped_vision_outputs = reshaped_vision_outputs.contiguous()

        pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs)
        pooled_vision_outputs = pooled_vision_outputs.flatten(2)
        pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2)

        normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs)

        projected_vision_outputs = torch.matmul(
            normed_vision_outputs, self.mm_input_projection_weight)
        return projected_vision_outputs.type_as(vision_outputs)

avg_pool instance-attribute

avg_pool = AvgPool2d(
    kernel_size=kernel_size, stride=kernel_size
)

kernel_size instance-attribute

kernel_size = patches_per_image // tokens_per_side

mm_input_projection_weight instance-attribute

mm_input_projection_weight = Parameter(
    zeros(hidden_size, hidden_size)
)

mm_soft_emb_norm instance-attribute

mm_soft_emb_norm = GemmaRMSNorm(
    hidden_size, eps=layer_norm_eps
)

patches_per_image instance-attribute

patches_per_image = int(image_size // patch_size)

tokens_per_side instance-attribute

tokens_per_side = int(mm_tokens_per_image ** 0.5)

__init__

__init__(config: Gemma3Config)
Source code in vllm/model_executor/models/gemma3_mm.py
def __init__(self, config: Gemma3Config):
    super().__init__()

    self.mm_input_projection_weight = nn.Parameter(
        torch.zeros(config.vision_config.hidden_size,
                    config.text_config.hidden_size))

    self.mm_soft_emb_norm = GemmaRMSNorm(
        config.vision_config.hidden_size,
        eps=config.vision_config.layer_norm_eps)

    self.patches_per_image = int(config.vision_config.image_size //
                                 config.vision_config.patch_size)
    self.tokens_per_side = int(config.mm_tokens_per_image**0.5)
    self.kernel_size = self.patches_per_image // self.tokens_per_side
    self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size,
                                 stride=self.kernel_size)

forward

forward(vision_outputs: Tensor)
Source code in vllm/model_executor/models/gemma3_mm.py
def forward(self, vision_outputs: torch.Tensor):
    batch_size, _, seq_length = vision_outputs.shape

    reshaped_vision_outputs = vision_outputs.transpose(1, 2)
    reshaped_vision_outputs = reshaped_vision_outputs.reshape(
        batch_size, seq_length, self.patches_per_image,
        self.patches_per_image)
    reshaped_vision_outputs = reshaped_vision_outputs.contiguous()

    pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs)
    pooled_vision_outputs = pooled_vision_outputs.flatten(2)
    pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2)

    normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs)

    projected_vision_outputs = torch.matmul(
        normed_vision_outputs, self.mm_input_projection_weight)
    return projected_vision_outputs.type_as(vision_outputs)

Gemma3ProcessingInfo

Bases: BaseProcessingInfo

Source code in vllm/model_executor/models/gemma3_mm.py
class Gemma3ProcessingInfo(BaseProcessingInfo):

    def get_hf_config(self):
        return self.ctx.get_hf_config(Gemma3Config)

    def get_hf_processor(self, **kwargs: object):
        return self.ctx.get_hf_processor(Gemma3Processor, **kwargs)

    def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
        return {"image": None}

    def _resolve_image_kwargs(
        self,
        processor: Gemma3Processor,
        keys: set[str],
    ) -> dict[str, Any]:
        image_processor = processor.image_processor
        kwargs = processor._merge_kwargs(
            Gemma3ProcessorKwargs,
            tokenizer_init_kwargs=processor.tokenizer.init_kwargs,
        )

        images_kwargs = kwargs["images_kwargs"]

        def _resolve_kw(key: str):
            val = getattr(image_processor, key)
            if val is None:
                val = images_kwargs[key]

            return val

        return {k: _resolve_kw(k) for k in keys}

    def get_num_crops(
        self,
        *,
        image_width: int,
        image_height: int,
        processor: Optional[Gemma3Processor],
    ) -> int:
        if processor is None:
            processor = self.get_hf_processor()

        images_kwargs = self._resolve_image_kwargs(
            processor, {
                "do_pan_and_scan", "pan_and_scan_min_crop_size",
                "pan_and_scan_max_num_crops",
                "pan_and_scan_min_ratio_to_activate"
            })

        do_pan_and_scan = images_kwargs["do_pan_and_scan"]
        pan_and_scan_min_crop_size = images_kwargs[
            "pan_and_scan_min_crop_size"]
        pan_and_scan_max_num_crops = images_kwargs[
            "pan_and_scan_max_num_crops"]
        pan_and_scan_min_ratio_to_activate = images_kwargs[
            "pan_and_scan_min_ratio_to_activate"]

        if not do_pan_and_scan:
            return 0

        if envs.VLLM_USE_V1:
            logger.warning_once(
                "`do_pan_and_scan=True` has suboptimal results on V1 "
                "because of the simplified attention pattern being used.")

        # Based on Gemma3ImageProcessor.pan_and_scan
        if image_width >= image_height:
            if image_width / image_height < pan_and_scan_min_ratio_to_activate:
                return 0

            num_crops_w = min(
                int(math.floor(image_width / pan_and_scan_min_crop_size)),
                int(math.floor(image_width / image_height + 0.5)),
            )

            num_crops_w = max(2, num_crops_w)
            num_crops_w = min(pan_and_scan_max_num_crops, num_crops_w)
            num_crops_h = 1
        else:
            if image_height / image_width < pan_and_scan_min_ratio_to_activate:
                return 0

            num_crops_h = min(
                int(math.floor(image_height / pan_and_scan_min_crop_size)),
                int(math.floor(image_height / image_width + 0.5)),
            )

            num_crops_h = max(2, num_crops_h)
            num_crops_h = min(pan_and_scan_max_num_crops, num_crops_h)
            num_crops_w = 1

        crop_size_w = int(math.ceil(image_width / num_crops_w))
        crop_size_h = int(math.ceil(image_height / num_crops_h))

        if min(crop_size_w, crop_size_h) < pan_and_scan_min_crop_size:
            return 0

        return num_crops_w * num_crops_h

    def get_image_repl(
        self,
        *,
        image_width: int,
        image_height: int,
        processor: Optional[Gemma3Processor],
    ) -> PromptUpdateDetails[str]:
        if processor is None:
            processor = self.get_hf_processor()

        boi_token = processor.boi_token

        num_crops = self.get_num_crops(
            image_width=image_width,
            image_height=image_height,
            processor=processor,
        )

        if num_crops == 0:
            image_text = boi_token
        else:
            crops_image_tokens = " ".join(boi_token for _ in range(num_crops))
            image_text = (
                f"Here is the original image {boi_token} and here are some "
                f"crops to help you see better {crops_image_tokens}")

        repl_full = image_text.replace(boi_token,
                                       processor.full_image_sequence)

        tokenizer = processor.tokenizer
        vocab = tokenizer.get_vocab()
        image_token_id = vocab[tokenizer.image_token]

        return PromptUpdateDetails.select_token_id(repl_full, image_token_id)

    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
        processor: Optional[Gemma3Processor],
    ) -> int:
        if processor is None:
            processor = self.get_hf_processor()

        num_crops = self.get_num_crops(
            image_width=image_width,
            image_height=image_height,
            processor=processor,
        )
        image_seq_len = processor.image_seq_length

        return (num_crops + 1) * image_seq_len

    def get_image_size_with_most_features(self) -> ImageSize:
        processor = self.get_hf_processor()

        images_kwargs = self._resolve_image_kwargs(
            processor, {"pan_and_scan_max_num_crops"})
        max_num_crops = images_kwargs["pan_and_scan_max_num_crops"]

        # Result in the max possible feature size (h:w = max_num_crops:1)
        return ImageSize(height=50 * max_num_crops, width=50)

_resolve_image_kwargs

_resolve_image_kwargs(
    processor: Gemma3Processor, keys: set[str]
) -> dict[str, Any]
Source code in vllm/model_executor/models/gemma3_mm.py
def _resolve_image_kwargs(
    self,
    processor: Gemma3Processor,
    keys: set[str],
) -> dict[str, Any]:
    image_processor = processor.image_processor
    kwargs = processor._merge_kwargs(
        Gemma3ProcessorKwargs,
        tokenizer_init_kwargs=processor.tokenizer.init_kwargs,
    )

    images_kwargs = kwargs["images_kwargs"]

    def _resolve_kw(key: str):
        val = getattr(image_processor, key)
        if val is None:
            val = images_kwargs[key]

        return val

    return {k: _resolve_kw(k) for k in keys}

get_hf_config

get_hf_config()
Source code in vllm/model_executor/models/gemma3_mm.py
def get_hf_config(self):
    return self.ctx.get_hf_config(Gemma3Config)

get_hf_processor

get_hf_processor(**kwargs: object)
Source code in vllm/model_executor/models/gemma3_mm.py
def get_hf_processor(self, **kwargs: object):
    return self.ctx.get_hf_processor(Gemma3Processor, **kwargs)

get_image_repl

get_image_repl(
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Gemma3Processor],
) -> PromptUpdateDetails[str]
Source code in vllm/model_executor/models/gemma3_mm.py
def get_image_repl(
    self,
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Gemma3Processor],
) -> PromptUpdateDetails[str]:
    if processor is None:
        processor = self.get_hf_processor()

    boi_token = processor.boi_token

    num_crops = self.get_num_crops(
        image_width=image_width,
        image_height=image_height,
        processor=processor,
    )

    if num_crops == 0:
        image_text = boi_token
    else:
        crops_image_tokens = " ".join(boi_token for _ in range(num_crops))
        image_text = (
            f"Here is the original image {boi_token} and here are some "
            f"crops to help you see better {crops_image_tokens}")

    repl_full = image_text.replace(boi_token,
                                   processor.full_image_sequence)

    tokenizer = processor.tokenizer
    vocab = tokenizer.get_vocab()
    image_token_id = vocab[tokenizer.image_token]

    return PromptUpdateDetails.select_token_id(repl_full, image_token_id)

get_image_size_with_most_features

get_image_size_with_most_features() -> ImageSize
Source code in vllm/model_executor/models/gemma3_mm.py
def get_image_size_with_most_features(self) -> ImageSize:
    processor = self.get_hf_processor()

    images_kwargs = self._resolve_image_kwargs(
        processor, {"pan_and_scan_max_num_crops"})
    max_num_crops = images_kwargs["pan_and_scan_max_num_crops"]

    # Result in the max possible feature size (h:w = max_num_crops:1)
    return ImageSize(height=50 * max_num_crops, width=50)

get_num_crops

get_num_crops(
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Gemma3Processor],
) -> int
Source code in vllm/model_executor/models/gemma3_mm.py
def get_num_crops(
    self,
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Gemma3Processor],
) -> int:
    if processor is None:
        processor = self.get_hf_processor()

    images_kwargs = self._resolve_image_kwargs(
        processor, {
            "do_pan_and_scan", "pan_and_scan_min_crop_size",
            "pan_and_scan_max_num_crops",
            "pan_and_scan_min_ratio_to_activate"
        })

    do_pan_and_scan = images_kwargs["do_pan_and_scan"]
    pan_and_scan_min_crop_size = images_kwargs[
        "pan_and_scan_min_crop_size"]
    pan_and_scan_max_num_crops = images_kwargs[
        "pan_and_scan_max_num_crops"]
    pan_and_scan_min_ratio_to_activate = images_kwargs[
        "pan_and_scan_min_ratio_to_activate"]

    if not do_pan_and_scan:
        return 0

    if envs.VLLM_USE_V1:
        logger.warning_once(
            "`do_pan_and_scan=True` has suboptimal results on V1 "
            "because of the simplified attention pattern being used.")

    # Based on Gemma3ImageProcessor.pan_and_scan
    if image_width >= image_height:
        if image_width / image_height < pan_and_scan_min_ratio_to_activate:
            return 0

        num_crops_w = min(
            int(math.floor(image_width / pan_and_scan_min_crop_size)),
            int(math.floor(image_width / image_height + 0.5)),
        )

        num_crops_w = max(2, num_crops_w)
        num_crops_w = min(pan_and_scan_max_num_crops, num_crops_w)
        num_crops_h = 1
    else:
        if image_height / image_width < pan_and_scan_min_ratio_to_activate:
            return 0

        num_crops_h = min(
            int(math.floor(image_height / pan_and_scan_min_crop_size)),
            int(math.floor(image_height / image_width + 0.5)),
        )

        num_crops_h = max(2, num_crops_h)
        num_crops_h = min(pan_and_scan_max_num_crops, num_crops_h)
        num_crops_w = 1

    crop_size_w = int(math.ceil(image_width / num_crops_w))
    crop_size_h = int(math.ceil(image_height / num_crops_h))

    if min(crop_size_w, crop_size_h) < pan_and_scan_min_crop_size:
        return 0

    return num_crops_w * num_crops_h

get_num_image_tokens

get_num_image_tokens(
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Gemma3Processor],
) -> int
Source code in vllm/model_executor/models/gemma3_mm.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Gemma3Processor],
) -> int:
    if processor is None:
        processor = self.get_hf_processor()

    num_crops = self.get_num_crops(
        image_width=image_width,
        image_height=image_height,
        processor=processor,
    )
    image_seq_len = processor.image_seq_length

    return (num_crops + 1) * image_seq_len

get_supported_mm_limits

get_supported_mm_limits() -> Mapping[str, Optional[int]]
Source code in vllm/model_executor/models/gemma3_mm.py
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"image": None}