Inference-only HF format GLM-4 model compatible with THUDM weights.
GlmForCausalLM
Bases: LlamaForCausalLM
Source code in vllm/model_executor/models/glm.py
| class GlmForCausalLM(LlamaForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
vllm_config.model_config.hf_config.partial_rotary_factor = 0.5
super().__init__(vllm_config=vllm_config, prefix=prefix)
# Hack Llama model to fit HF format GLM implementation
# Attention difference between GLM and Llama:
# 1. Half partial rotary_dim and no Neox style.
# 2. There is no bias for o_proj in attention
for layer in self.model.layers:
if not isinstance(layer, PPMissingLayer):
layer.self_attn.rotary_emb.is_neox_style = False
layer.self_attn.o_proj.bias = None
layer.self_attn.o_proj.skip_bias_add = True
|
__init__
Source code in vllm/model_executor/models/glm.py
| def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
vllm_config.model_config.hf_config.partial_rotary_factor = 0.5
super().__init__(vllm_config=vllm_config, prefix=prefix)
# Hack Llama model to fit HF format GLM implementation
# Attention difference between GLM and Llama:
# 1. Half partial rotary_dim and no Neox style.
# 2. There is no bias for o_proj in attention
for layer in self.model.layers:
if not isinstance(layer, PPMissingLayer):
layer.self_attn.rotary_emb.is_neox_style = False
layer.self_attn.o_proj.bias = None
layer.self_attn.o_proj.skip_bias_add = True
|