vllm.model_executor.models.olmo
Inference-only OLMo model compatible with HuggingFace weights.
OlmoAttention
¶
Bases: Module
This is the attention block where the output is computed as
Attention(LN(x))
in MLP(LN(x + Attention(LN(x))))
(plus another skip connection).
Source code in vllm/model_executor/models/olmo.py
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scale=scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
o_proj
instance-attribute
¶
o_proj = RowParallelLinear(
hidden_size,
hidden_size,
bias=attention_bias,
quant_config=quant_config,
)
qkv_proj
instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
bias=attention_bias,
quant_config=quant_config,
)
rotary_emb
instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position_embeddings,
base=rope_theta,
)
__init__
¶
__init__(
config: OlmoConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/olmo.py
forward
¶
Source code in vllm/model_executor/models/olmo.py
OlmoDecoderLayer
¶
Bases: Module
This is a typical transformer block where the output is
computed as MLP(LN(x + Attention(LN(x))))
(plus another skip connection).
Source code in vllm/model_executor/models/olmo.py
input_layernorm
instance-attribute
¶
input_layernorm = LayerNorm(
hidden_size, elementwise_affine=False, bias=False
)
post_attention_layernorm
instance-attribute
¶
post_attention_layernorm = LayerNorm(
hidden_size, elementwise_affine=False, bias=False
)
self_attn
instance-attribute
¶
self_attn = OlmoAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.self_attn",
)
__init__
¶
__init__(
config: OlmoConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/olmo.py
forward
¶
forward(
positions: Tensor, hidden_states: Tensor
) -> tuple[Tensor, Optional[tuple[Tensor, Tensor]]]
Source code in vllm/model_executor/models/olmo.py
OlmoForCausalLM
¶
Bases: Module
, SupportsPP
Extremely barebones HF model wrapper.
Source code in vllm/model_executor/models/olmo.py
make_empty_intermediate_tensors
instance-attribute
¶
model
instance-attribute
¶
model = OlmoModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/olmo.py
get_input_embeddings
¶
load_weights
¶
Source code in vllm/model_executor/models/olmo.py
OlmoMLP
¶
Bases: Module
This is the MLP block where the output is computed as
MLP(LN(x))
in MLP(LN(x + Attention(LN(x))))
(plus another skip connection).
Source code in vllm/model_executor/models/olmo.py
down_proj
instance-attribute
¶
down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
)
gate_up_proj
instance-attribute
¶
gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
__init__
¶
__init__(
config: OlmoConfig,
quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/olmo.py
OlmoModel
¶
Bases: Module
Source code in vllm/model_executor/models/olmo.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
|
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], hidden_size
)
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
:param input_ids: A tensor of shape (batch_size, seq_len)
.