Skip to content

vllm.model_executor.models.llava_next

LlavaNextImageInputs module-attribute

_I module-attribute

_I = TypeVar('_I', bound=LlavaNextProcessingInfo)

BaseLlavaNextMultiModalProcessor

Bases: BaseLlavaMultiModalProcessor[_I]

Source code in vllm/model_executor/models/llava_next.py
class BaseLlavaNextMultiModalProcessor(BaseLlavaMultiModalProcessor[_I]):

    # Copied from BaseMultiModalProcessor
    @abstractmethod
    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        raise NotImplementedError

_get_mm_fields_config abstractmethod

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/llava_next.py
@abstractmethod
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    raise NotImplementedError

LlavaNextForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsPP

Source code in vllm/model_executor/models/llava_next.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
@MULTIMODAL_REGISTRY.register_processor(LlavaNextMultiModalProcessor,
                                        info=LlavaNextProcessingInfo,
                                        dummy_inputs=LlavaDummyInputsBuilder)
class LlavaNextForConditionalGeneration(nn.Module, SupportsMultiModal,
                                        SupportsPP):

    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            # mapping for new names in checkpoint saved after transformers v4.52
            "model.language_model.": "language_model.model.",
            "model.vision_tower.": "vision_tower.",
            "model.multi_modal_projector.": "multi_modal_projector.",
            "model.image_newline": "image_newline",
            "lm_head.": "language_model.lm_head.",
        })

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("image"):
            return "<image>"

        raise ValueError("Only image modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config

        vision_feature_layer = config.vision_feature_layer
        # Determine the layer up to which we will initialize the vision tower
        if isinstance(vision_feature_layer, int):
            vision_hidden_size = config.vision_config.hidden_size
            self.feature_sample_layers = None
        # Used for multimodal granite models to control encoder outputs
        elif isinstance(vision_feature_layer, (list, tuple)):
            vision_hidden_size = config.vision_config.hidden_size * len(
                vision_feature_layer)
            self.feature_sample_layers = vision_feature_layer
        else:
            raise TypeError(
                f"vision_layer_feature type: {type(vision_feature_layer)}"
                " is not supported")

        self.config = config
        self.multimodal_config = multimodal_config

        # TODO: Optionally initializes this for supporting embeddings.
        self.vision_tower = init_vision_tower_for_llava(
            config,
            quant_config,
            require_post_norm=False,
            prefix=maybe_prefix(prefix, "vision_tower"))
        self.image_newline = nn.Parameter(
            torch.empty(config.text_config.hidden_size))
        self.multi_modal_projector = LlavaMultiModalProjector(
            vision_hidden_size=vision_hidden_size,
            text_hidden_size=config.text_config.hidden_size,
            projector_hidden_act=config.projector_hidden_act,
            multimodal_projector_bias=config.multimodal_projector_bias)

        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=config.text_config,
            prefix=maybe_prefix(prefix, "language_model"),
        )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors)

    def _validate_image_sizes(self, data: torch.Tensor) -> torch.Tensor:
        expected_dims = (2, )

        def _validate_shape(d: torch.Tensor):
            actual_dims = tuple(d.shape)

            if actual_dims != expected_dims:
                expected_expr = str(expected_dims)
                raise ValueError(
                    f"The expected shape of image sizes per image per batch "
                    f"is {expected_expr}. You supplied {tuple(d.shape)}.")

        for d in data:
            _validate_shape(d)

        return data

    def _validate_pixel_values(
        self, data: Union[torch.Tensor, list[torch.Tensor]]
    ) -> Union[torch.Tensor, list[torch.Tensor]]:

        h = w = self.config.vision_config.image_size
        expected_dims = (3, h, w)

        def _validate_shape(d: torch.Tensor):
            actual_dims = tuple(d.shape[1:])

            if actual_dims != expected_dims:
                expected_expr = ("num_patches", *map(str, expected_dims))
                raise ValueError(
                    "The expected shape of pixel values per image per batch "
                    f"is {expected_expr}. You supplied {tuple(d.shape)}.")

        for d in data:
            _validate_shape(d)

        return data

    def _parse_and_validate_image_input(
            self, **kwargs: object) -> Optional[LlavaNextImageInputs]:
        pixel_values = kwargs.pop("pixel_values", None)
        image_sizes = kwargs.pop("image_sizes", None)
        image_embeds = kwargs.pop("image_embeds", None)

        if pixel_values is None and image_embeds is None:
            return None

        if pixel_values is not None:
            if not isinstance(pixel_values, (torch.Tensor, list)):
                raise ValueError("Incorrect type of pixel values. "
                                 f"Got type: {type(pixel_values)}")

            if not isinstance(image_sizes, (torch.Tensor, list)):
                raise ValueError("Incorrect type of image sizes. "
                                 f"Got type: {type(image_sizes)}")

            return LlavaNextImagePixelInputs(
                type="pixel_values",
                pixel_values=self._validate_pixel_values(
                    flatten_bn(pixel_values)),
                image_sizes=self._validate_image_sizes(
                    flatten_bn(image_sizes, concat=True)),
            )

        if image_embeds is not None:
            if not isinstance(image_embeds, torch.Tensor):
                raise ValueError("Incorrect type of image embeds. "
                                 f"Got type: {type(image_embeds)}")

            return LlavaNextImageEmbeddingInputs(
                type="image_embeds",
                data=flatten_bn(image_embeds),
            )

        raise AssertionError("This line should be unreachable.")

    def _select_image_features(self, image_features: torch.Tensor, *,
                               strategy: str) -> torch.Tensor:
        # Copied from https://github.com/huggingface/transformers/blob/39c3c0a72af6fbda5614dde02ff236069bb79827/src/transformers/models/llava/modeling_llava.py#L421  # noqa
        if strategy == "default":
            return image_features[:, 1:]
        elif strategy == "full":
            return image_features

        raise ValueError(f"Unexpected select feature strategy: {strategy}")

    def _image_pixels_to_features(
        self,
        vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
        pixel_values: torch.Tensor,
    ) -> torch.Tensor:

        # NOTE: we skip the step to select the vision feature layer since
        # this is already done inside the vision tower
        image_features = vision_tower(
            pixel_values, feature_sample_layers=self.feature_sample_layers)

        return self._select_image_features(
            image_features,
            strategy=self.config.vision_feature_select_strategy,
        )

    # Based on: https://github.com/haotian-liu/LLaVA/blob/main/llava/model/llava_arch.py
    def _merge_image_patch_embeddings(self, image_size: torch.Tensor,
                                      patch_embeddings: torch.Tensor, *,
                                      strategy: str) -> torch.Tensor:
        if strategy == "flat":
            return patch_embeddings.flatten(0, 1)

        if strategy.startswith("spatial"):
            height = width = self.config.vision_config.image_size \
                // self.config.vision_config.patch_size

            base_patch_embeds = patch_embeddings[0]
            if height * width != base_patch_embeds.shape[0]:
                raise ValueError(
                    "The number of patches is not consistent with the "
                    "image size.")

            if patch_embeddings.shape[0] > 1:
                other_patch_embeds = patch_embeddings[1:]

                # Move to CPU to avoid floating-point errors
                orig_height, orig_width = image_size.tolist()

                # image_aspect_ratio == "anyres"
                num_patch_height, num_patch_width = get_anyres_image_grid_shape(
                    (orig_height, orig_width),
                    self.config.image_grid_pinpoints,
                    self.config.vision_config.image_size,
                )
                num_patches = num_patch_height * num_patch_width

                # Image patches might be padded for batch processing
                other_patch_embeds = other_patch_embeds[:num_patches] \
                    .view(num_patch_height, num_patch_width, height, width, -1)

                if "unpad" in strategy:
                    other_patch_embeds = other_patch_embeds \
                        .permute(4, 0, 2, 1, 3).contiguous() \
                        .flatten(1, 2).flatten(2, 3)
                    other_patch_embeds = unpad_image(other_patch_embeds,
                                                     (orig_height, orig_width))
                    other_patch_embeds = torch.cat((
                        other_patch_embeds,
                        self.image_newline[:, None, None] \
                            .expand(*other_patch_embeds.shape[:-1], 1) \
                            .to(other_patch_embeds.device),
                    ), dim=-1)
                    other_patch_embeds = other_patch_embeds \
                        .flatten(1, 2).transpose(0, 1)
                else:
                    other_patch_embeds = other_patch_embeds \
                        .permute(0, 2, 1, 3, 4).contiguous() \
                        .flatten(0, 3)

                merged_patch_embeddings = torch.cat(
                    (base_patch_embeds, other_patch_embeds), dim=0)
            else:
                if "unpad" in strategy:
                    merged_patch_embeddings = torch.cat(
                        (base_patch_embeds,
                         self.image_newline[None] \
                            .to(base_patch_embeds.device)
                    ), dim=0)
                else:
                    merged_patch_embeddings = base_patch_embeds

            return merged_patch_embeddings

        raise ValueError(f"Unexpected patch merge strategy: {strategy}")

    def _process_image_pixels(
        self,
        inputs: LlavaNextImagePixelInputs,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
        assert self.vision_tower is not None

        pixel_values = inputs["pixel_values"]

        if isinstance(pixel_values, torch.Tensor):
            b, num_patches, c, h, w = pixel_values.shape
            stacked_pixel_values = pixel_values.view(b * num_patches, c, h, w)
            stacked_image_features = self._image_pixels_to_features(
                self.vision_tower, stacked_pixel_values)
            stacked_patch_embeddings = self.multi_modal_projector(
                stacked_image_features)

            return stacked_patch_embeddings.view(
                b, num_patches, *stacked_patch_embeddings.shape[1:])

        num_patches_per_batch = [v.shape[0] for v in pixel_values]
        stacked_pixel_values = torch.cat(pixel_values)
        stacked_image_features = self._image_pixels_to_features(
            self.vision_tower, stacked_pixel_values)

        return torch.split(self.multi_modal_projector(stacked_image_features),
                           num_patches_per_batch)

    def _process_image_input(
        self,
        image_input: LlavaNextImageInputs,
    ) -> Union[torch.Tensor, list[torch.Tensor]]:
        if image_input["type"] == "image_embeds":
            return [image_input["data"]]

        patch_embeddings = self._process_image_pixels(image_input)

        image_sizes = image_input.get("image_sizes")
        if image_sizes is None:
            batch_size = len(image_input["data"])
            vision_config = self.config.vision_config
            default_height = default_width = vision_config.image_size
            image_sizes = torch.as_tensor([[default_height, default_width]
                                           for _ in range(batch_size)])

        return [
            self._merge_image_patch_embeddings(image_sizes[i],
                                               patch_features_batch,
                                               strategy="spatial_unpad")
            for i, patch_features_batch in enumerate(patch_embeddings)
        ]

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def get_multimodal_embeddings(self,
                                  **kwargs: object) -> MultiModalEmbeddings:
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return []
        vision_embeddings = self._process_image_input(image_input)
        return vision_embeddings

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:

        if multimodal_embeddings is None \
            or len(multimodal_embeddings) == 0:
            return self.language_model.get_input_embeddings(input_ids)

        inputs_embeds = embed_multimodal(
            input_ids,
            self.config.image_token_index,
            self.language_model.model.get_input_embeddings,
            multimodal_embeddings,
        )
        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: object,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        """Run forward pass for LlaVA-NeXT.

        One key thing to understand is the `input_ids` already accounts for the
        positions of the to-be-inserted image embeddings.

        Concretely, consider a text prompt:
        `"A chat between a curious human and an artificial intelligence
        assistant. The assistant gives helpful, detailed, and polite answers to
        the human's questions.
        USER: <image>\\nWhat is shown in this image? ASSISTANT:"`.

        Tokenizer outputs:
        `[1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255,
        29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568,
        6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901,
        29871, 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799,
        9047, 13566, 29901]`.

        To reserve space in KV cache, we have to insert placeholder tokens
        before they are inputted to the model, so the input processor prepends
        additional image tokens (denoted as `32000`), resulting in:
        `[1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255,
        29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568,
        6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901,
        29871, 32000, ..., 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973,
        319, 1799, 9047, 13566, 29901]`.

        Unlike in LLaVA-1.5, the number of image tokens inputted to the language
        model depends on the original size of the input image. Including the
        original image token in the input, the required number of image tokens
        is given by [get_llava_next_image_feature_size][].

        This way, the `positions` and `attn_metadata` are consistent
        with the `input_ids`.

        Args:
            input_ids: Flattened (concatenated) input_ids corresponding to a
                batch.
            pixel_values: The pixels in each grid patch for each input image.
            image_sizes: The original `(height, width)` for each input image.

        Info:
            [LlavaNextImageInputs][]
        """
        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner, this
        # condition is for v0 compatibility.
        elif inputs_embeds is None:
            vision_embeddings = self.get_multimodal_embeddings(**kwargs)
            inputs_embeds = self.get_input_embeddings(input_ids,
                                                      vision_embeddings)
            input_ids = None

        hidden_states = self.language_model.model(input_ids,
                                                  positions,
                                                  intermediate_tensors,
                                                  inputs_embeds=inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states,
                                                  sampling_metadata)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

config instance-attribute

config = config

feature_sample_layers instance-attribute

feature_sample_layers = None

hf_to_vllm_mapper class-attribute instance-attribute

hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={
        "model.language_model.": "language_model.model.",
        "model.vision_tower.": "vision_tower.",
        "model.multi_modal_projector.": "multi_modal_projector.",
        "model.image_newline": "image_newline",
        "lm_head.": "language_model.lm_head.",
    }
)

image_newline instance-attribute

image_newline = Parameter(empty(hidden_size))

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    hf_config=text_config,
    prefix=maybe_prefix(prefix, "language_model"),
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

multi_modal_projector instance-attribute

multi_modal_projector = LlavaMultiModalProjector(
    vision_hidden_size=vision_hidden_size,
    text_hidden_size=hidden_size,
    projector_hidden_act=projector_hidden_act,
    multimodal_projector_bias=multimodal_projector_bias,
)

multimodal_config instance-attribute

multimodal_config = multimodal_config

vision_tower instance-attribute

vision_tower = init_vision_tower_for_llava(
    config,
    quant_config,
    require_post_norm=False,
    prefix=maybe_prefix(prefix, "vision_tower"),
)

__init__

__init__(
    *, vllm_config: VllmConfig, prefix: str = ""
) -> None
Source code in vllm/model_executor/models/llava_next.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    multimodal_config = vllm_config.model_config.multimodal_config

    vision_feature_layer = config.vision_feature_layer
    # Determine the layer up to which we will initialize the vision tower
    if isinstance(vision_feature_layer, int):
        vision_hidden_size = config.vision_config.hidden_size
        self.feature_sample_layers = None
    # Used for multimodal granite models to control encoder outputs
    elif isinstance(vision_feature_layer, (list, tuple)):
        vision_hidden_size = config.vision_config.hidden_size * len(
            vision_feature_layer)
        self.feature_sample_layers = vision_feature_layer
    else:
        raise TypeError(
            f"vision_layer_feature type: {type(vision_feature_layer)}"
            " is not supported")

    self.config = config
    self.multimodal_config = multimodal_config

    # TODO: Optionally initializes this for supporting embeddings.
    self.vision_tower = init_vision_tower_for_llava(
        config,
        quant_config,
        require_post_norm=False,
        prefix=maybe_prefix(prefix, "vision_tower"))
    self.image_newline = nn.Parameter(
        torch.empty(config.text_config.hidden_size))
    self.multi_modal_projector = LlavaMultiModalProjector(
        vision_hidden_size=vision_hidden_size,
        text_hidden_size=config.text_config.hidden_size,
        projector_hidden_act=config.projector_hidden_act,
        multimodal_projector_bias=config.multimodal_projector_bias)

    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        hf_config=config.text_config,
        prefix=maybe_prefix(prefix, "language_model"),
    )

    self.make_empty_intermediate_tensors = (
        self.language_model.make_empty_intermediate_tensors)

_image_pixels_to_features

_image_pixels_to_features(
    vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
    pixel_values: Tensor,
) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def _image_pixels_to_features(
    self,
    vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
    pixel_values: torch.Tensor,
) -> torch.Tensor:

    # NOTE: we skip the step to select the vision feature layer since
    # this is already done inside the vision tower
    image_features = vision_tower(
        pixel_values, feature_sample_layers=self.feature_sample_layers)

    return self._select_image_features(
        image_features,
        strategy=self.config.vision_feature_select_strategy,
    )

_merge_image_patch_embeddings

_merge_image_patch_embeddings(
    image_size: Tensor,
    patch_embeddings: Tensor,
    *,
    strategy: str,
) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def _merge_image_patch_embeddings(self, image_size: torch.Tensor,
                                  patch_embeddings: torch.Tensor, *,
                                  strategy: str) -> torch.Tensor:
    if strategy == "flat":
        return patch_embeddings.flatten(0, 1)

    if strategy.startswith("spatial"):
        height = width = self.config.vision_config.image_size \
            // self.config.vision_config.patch_size

        base_patch_embeds = patch_embeddings[0]
        if height * width != base_patch_embeds.shape[0]:
            raise ValueError(
                "The number of patches is not consistent with the "
                "image size.")

        if patch_embeddings.shape[0] > 1:
            other_patch_embeds = patch_embeddings[1:]

            # Move to CPU to avoid floating-point errors
            orig_height, orig_width = image_size.tolist()

            # image_aspect_ratio == "anyres"
            num_patch_height, num_patch_width = get_anyres_image_grid_shape(
                (orig_height, orig_width),
                self.config.image_grid_pinpoints,
                self.config.vision_config.image_size,
            )
            num_patches = num_patch_height * num_patch_width

            # Image patches might be padded for batch processing
            other_patch_embeds = other_patch_embeds[:num_patches] \
                .view(num_patch_height, num_patch_width, height, width, -1)

            if "unpad" in strategy:
                other_patch_embeds = other_patch_embeds \
                    .permute(4, 0, 2, 1, 3).contiguous() \
                    .flatten(1, 2).flatten(2, 3)
                other_patch_embeds = unpad_image(other_patch_embeds,
                                                 (orig_height, orig_width))
                other_patch_embeds = torch.cat((
                    other_patch_embeds,
                    self.image_newline[:, None, None] \
                        .expand(*other_patch_embeds.shape[:-1], 1) \
                        .to(other_patch_embeds.device),
                ), dim=-1)
                other_patch_embeds = other_patch_embeds \
                    .flatten(1, 2).transpose(0, 1)
            else:
                other_patch_embeds = other_patch_embeds \
                    .permute(0, 2, 1, 3, 4).contiguous() \
                    .flatten(0, 3)

            merged_patch_embeddings = torch.cat(
                (base_patch_embeds, other_patch_embeds), dim=0)
        else:
            if "unpad" in strategy:
                merged_patch_embeddings = torch.cat(
                    (base_patch_embeds,
                     self.image_newline[None] \
                        .to(base_patch_embeds.device)
                ), dim=0)
            else:
                merged_patch_embeddings = base_patch_embeds

        return merged_patch_embeddings

    raise ValueError(f"Unexpected patch merge strategy: {strategy}")

_parse_and_validate_image_input

_parse_and_validate_image_input(
    **kwargs: object,
) -> Optional[LlavaNextImageInputs]
Source code in vllm/model_executor/models/llava_next.py
def _parse_and_validate_image_input(
        self, **kwargs: object) -> Optional[LlavaNextImageInputs]:
    pixel_values = kwargs.pop("pixel_values", None)
    image_sizes = kwargs.pop("image_sizes", None)
    image_embeds = kwargs.pop("image_embeds", None)

    if pixel_values is None and image_embeds is None:
        return None

    if pixel_values is not None:
        if not isinstance(pixel_values, (torch.Tensor, list)):
            raise ValueError("Incorrect type of pixel values. "
                             f"Got type: {type(pixel_values)}")

        if not isinstance(image_sizes, (torch.Tensor, list)):
            raise ValueError("Incorrect type of image sizes. "
                             f"Got type: {type(image_sizes)}")

        return LlavaNextImagePixelInputs(
            type="pixel_values",
            pixel_values=self._validate_pixel_values(
                flatten_bn(pixel_values)),
            image_sizes=self._validate_image_sizes(
                flatten_bn(image_sizes, concat=True)),
        )

    if image_embeds is not None:
        if not isinstance(image_embeds, torch.Tensor):
            raise ValueError("Incorrect type of image embeds. "
                             f"Got type: {type(image_embeds)}")

        return LlavaNextImageEmbeddingInputs(
            type="image_embeds",
            data=flatten_bn(image_embeds),
        )

    raise AssertionError("This line should be unreachable.")

_process_image_input

_process_image_input(
    image_input: LlavaNextImageInputs,
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/llava_next.py
def _process_image_input(
    self,
    image_input: LlavaNextImageInputs,
) -> Union[torch.Tensor, list[torch.Tensor]]:
    if image_input["type"] == "image_embeds":
        return [image_input["data"]]

    patch_embeddings = self._process_image_pixels(image_input)

    image_sizes = image_input.get("image_sizes")
    if image_sizes is None:
        batch_size = len(image_input["data"])
        vision_config = self.config.vision_config
        default_height = default_width = vision_config.image_size
        image_sizes = torch.as_tensor([[default_height, default_width]
                                       for _ in range(batch_size)])

    return [
        self._merge_image_patch_embeddings(image_sizes[i],
                                           patch_features_batch,
                                           strategy="spatial_unpad")
        for i, patch_features_batch in enumerate(patch_embeddings)
    ]

_process_image_pixels

_process_image_pixels(
    inputs: LlavaNextImagePixelInputs,
) -> Union[Tensor, tuple[Tensor, ...]]
Source code in vllm/model_executor/models/llava_next.py
def _process_image_pixels(
    self,
    inputs: LlavaNextImagePixelInputs,
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
    assert self.vision_tower is not None

    pixel_values = inputs["pixel_values"]

    if isinstance(pixel_values, torch.Tensor):
        b, num_patches, c, h, w = pixel_values.shape
        stacked_pixel_values = pixel_values.view(b * num_patches, c, h, w)
        stacked_image_features = self._image_pixels_to_features(
            self.vision_tower, stacked_pixel_values)
        stacked_patch_embeddings = self.multi_modal_projector(
            stacked_image_features)

        return stacked_patch_embeddings.view(
            b, num_patches, *stacked_patch_embeddings.shape[1:])

    num_patches_per_batch = [v.shape[0] for v in pixel_values]
    stacked_pixel_values = torch.cat(pixel_values)
    stacked_image_features = self._image_pixels_to_features(
        self.vision_tower, stacked_pixel_values)

    return torch.split(self.multi_modal_projector(stacked_image_features),
                       num_patches_per_batch)

_select_image_features

_select_image_features(
    image_features: Tensor, *, strategy: str
) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def _select_image_features(self, image_features: torch.Tensor, *,
                           strategy: str) -> torch.Tensor:
    # Copied from https://github.com/huggingface/transformers/blob/39c3c0a72af6fbda5614dde02ff236069bb79827/src/transformers/models/llava/modeling_llava.py#L421  # noqa
    if strategy == "default":
        return image_features[:, 1:]
    elif strategy == "full":
        return image_features

    raise ValueError(f"Unexpected select feature strategy: {strategy}")

_validate_image_sizes

_validate_image_sizes(data: Tensor) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def _validate_image_sizes(self, data: torch.Tensor) -> torch.Tensor:
    expected_dims = (2, )

    def _validate_shape(d: torch.Tensor):
        actual_dims = tuple(d.shape)

        if actual_dims != expected_dims:
            expected_expr = str(expected_dims)
            raise ValueError(
                f"The expected shape of image sizes per image per batch "
                f"is {expected_expr}. You supplied {tuple(d.shape)}.")

    for d in data:
        _validate_shape(d)

    return data

_validate_pixel_values

_validate_pixel_values(
    data: Union[Tensor, list[Tensor]],
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/llava_next.py
def _validate_pixel_values(
    self, data: Union[torch.Tensor, list[torch.Tensor]]
) -> Union[torch.Tensor, list[torch.Tensor]]:

    h = w = self.config.vision_config.image_size
    expected_dims = (3, h, w)

    def _validate_shape(d: torch.Tensor):
        actual_dims = tuple(d.shape[1:])

        if actual_dims != expected_dims:
            expected_expr = ("num_patches", *map(str, expected_dims))
            raise ValueError(
                "The expected shape of pixel values per image per batch "
                f"is {expected_expr}. You supplied {tuple(d.shape)}.")

    for d in data:
        _validate_shape(d)

    return data

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/llava_next.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    return self.language_model.compute_logits(hidden_states,
                                              sampling_metadata)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Union[Tensor, IntermediateTensors]

Run forward pass for LlaVA-NeXT.

One key thing to understand is the input_ids already accounts for the positions of the to-be-inserted image embeddings.

Concretely, consider a text prompt: "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:".

Tokenizer outputs: [1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255, 29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568, 6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901, 29871, 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799, 9047, 13566, 29901].

To reserve space in KV cache, we have to insert placeholder tokens before they are inputted to the model, so the input processor prepends additional image tokens (denoted as 32000), resulting in: [1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255, 29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568, 6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901, 29871, 32000, ..., 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799, 9047, 13566, 29901].

Unlike in LLaVA-1.5, the number of image tokens inputted to the language model depends on the original size of the input image. Including the original image token in the input, the required number of image tokens is given by [get_llava_next_image_feature_size][].

This way, the positions and attn_metadata are consistent with the input_ids.

Parameters:

Name Type Description Default
input_ids Tensor

Flattened (concatenated) input_ids corresponding to a batch.

required
pixel_values

The pixels in each grid patch for each input image.

required
image_sizes

The original (height, width) for each input image.

required
Info

[LlavaNextImageInputs][]

Source code in vllm/model_executor/models/llava_next.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
    """Run forward pass for LlaVA-NeXT.

    One key thing to understand is the `input_ids` already accounts for the
    positions of the to-be-inserted image embeddings.

    Concretely, consider a text prompt:
    `"A chat between a curious human and an artificial intelligence
    assistant. The assistant gives helpful, detailed, and polite answers to
    the human's questions.
    USER: <image>\\nWhat is shown in this image? ASSISTANT:"`.

    Tokenizer outputs:
    `[1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255,
    29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568,
    6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901,
    29871, 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799,
    9047, 13566, 29901]`.

    To reserve space in KV cache, we have to insert placeholder tokens
    before they are inputted to the model, so the input processor prepends
    additional image tokens (denoted as `32000`), resulting in:
    `[1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255,
    29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568,
    6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901,
    29871, 32000, ..., 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973,
    319, 1799, 9047, 13566, 29901]`.

    Unlike in LLaVA-1.5, the number of image tokens inputted to the language
    model depends on the original size of the input image. Including the
    original image token in the input, the required number of image tokens
    is given by [get_llava_next_image_feature_size][].

    This way, the `positions` and `attn_metadata` are consistent
    with the `input_ids`.

    Args:
        input_ids: Flattened (concatenated) input_ids corresponding to a
            batch.
        pixel_values: The pixels in each grid patch for each input image.
        image_sizes: The original `(height, width)` for each input image.

    Info:
        [LlavaNextImageInputs][]
    """
    if intermediate_tensors is not None:
        inputs_embeds = None

    # NOTE: In v1, inputs_embeds is always generated at model runner, this
    # condition is for v0 compatibility.
    elif inputs_embeds is None:
        vision_embeddings = self.get_multimodal_embeddings(**kwargs)
        inputs_embeds = self.get_input_embeddings(input_ids,
                                                  vision_embeddings)
        input_ids = None

    hidden_states = self.language_model.model(input_ids,
                                              positions,
                                              intermediate_tensors,
                                              inputs_embeds=inputs_embeds)
    return hidden_states

get_input_embeddings

get_input_embeddings(
    input_ids: Tensor,
    multimodal_embeddings: Optional[
        MultiModalEmbeddings
    ] = None,
) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def get_input_embeddings(
    self,
    input_ids: torch.Tensor,
    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:

    if multimodal_embeddings is None \
        or len(multimodal_embeddings) == 0:
        return self.language_model.get_input_embeddings(input_ids)

    inputs_embeds = embed_multimodal(
        input_ids,
        self.config.image_token_index,
        self.language_model.model.get_input_embeddings,
        multimodal_embeddings,
    )
    return inputs_embeds

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/llava_next.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/llava_next.py
def get_multimodal_embeddings(self,
                              **kwargs: object) -> MultiModalEmbeddings:
    image_input = self._parse_and_validate_image_input(**kwargs)
    if image_input is None:
        return []
    vision_embeddings = self._process_image_input(image_input)
    return vision_embeddings

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> Optional[str]
Source code in vllm/model_executor/models/llava_next.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
    if modality.startswith("image"):
        return "<image>"

    raise ValueError("Only image modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/llava_next.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

LlavaNextImageEmbeddingInputs

Bases: TypedDict

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextImageEmbeddingInputs(TypedDict):
    type: Literal["image_embeds"]
    data: torch.Tensor
    """Shape: `(batch_size * num_images, image_feature_size, hidden_size)`

    `hidden_size` must match the hidden size of language model backbone.
    """

data instance-attribute

data: Tensor

Shape: (batch_size * num_images, image_feature_size, hidden_size)

hidden_size must match the hidden size of language model backbone.

type instance-attribute

type: Literal['image_embeds']

LlavaNextImagePixelInputs

Bases: TypedDict

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextImagePixelInputs(TypedDict):
    type: Literal["pixel_values"]
    pixel_values: Union[torch.Tensor, list[torch.Tensor]]
    """
    Shape:
    `(batch_size * num_images, 1 + num_patches, num_channels, height, width)`

    Note that `num_patches` may be different per batch and image,
    in which case the data is passed as a list instead of a batched tensor.
    """

    image_sizes: NotRequired[torch.Tensor]
    """
    Shape: `(batch_size * num_images, 2)`

    This should be in `(height, width)` format.
    """

image_sizes instance-attribute

image_sizes: NotRequired[Tensor]

Shape: (batch_size * num_images, 2)

This should be in (height, width) format.

pixel_values instance-attribute

pixel_values: Union[Tensor, list[Tensor]]

Shape: (batch_size * num_images, 1 + num_patches, num_channels, height, width)

Note that num_patches may be different per batch and image, in which case the data is passed as a list instead of a batched tensor.

type instance-attribute

type: Literal['pixel_values']

LlavaNextLikeConfig

Bases: LlavaLikeConfig, Protocol

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextLikeConfig(LlavaLikeConfig, Protocol):
    image_grid_pinpoints: Final[list[list[int]]]

image_grid_pinpoints instance-attribute

image_grid_pinpoints: Final[list[list[int]]]

LlavaNextMultiModalProcessor

Bases: BaseLlavaNextMultiModalProcessor[LlavaNextProcessingInfo]

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextMultiModalProcessor(
        BaseLlavaNextMultiModalProcessor[LlavaNextProcessingInfo]):

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            pixel_values=MultiModalFieldConfig.batched("image"),
            image_sizes=MultiModalFieldConfig.batched("image"),
            image_embeds=MultiModalFieldConfig.batched("image"),
        )

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/llava_next.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        pixel_values=MultiModalFieldConfig.batched("image"),
        image_sizes=MultiModalFieldConfig.batched("image"),
        image_embeds=MultiModalFieldConfig.batched("image"),
    )

LlavaNextProcessingInfo

Bases: BaseLlavaProcessingInfo

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextProcessingInfo(BaseLlavaProcessingInfo):

    def get_hf_config(self) -> LlavaNextLikeConfig:
        return self.ctx.get_hf_config(LlavaNextConfig)

    def get_hf_processor(self, **kwargs: object):
        hf_processor = self.ctx.get_hf_processor(LlavaNextProcessor, **kwargs)

        # In case patch_size is omitted from `processor_config.json`
        # e.g. for E5-V: https://huggingface.co/royokong/e5-v
        if hf_processor.patch_size is None:
            patch_size = self.get_vision_encoder_info().get_patch_size()
            hf_processor.patch_size = patch_size

        return hf_processor

    # Based on: https://github.com/huggingface/text-generation-inference/blob/v3.0.1/server/text_generation_server/models/vlm_causal_lm.py#L113
    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
    ) -> int:
        hf_config = self.get_hf_config()
        vision_encoder_info = self.get_vision_encoder_info()

        base_feature_size = self._apply_feature_select_strategy(
            hf_config.vision_feature_select_strategy,
            vision_encoder_info.get_num_image_tokens(
                image_width=image_width,
                image_height=image_height,
            ),
        )

        num_patch_height, num_patch_width = get_anyres_image_grid_shape(
            image_size=(image_height, image_width),
            grid_pinpoints=hf_config.image_grid_pinpoints,
            patch_size=vision_encoder_info.get_image_size(),
        )

        (
            unpadded_feature_size,
            newline_feature_size,
        ) = self._get_num_unpadded_features(
            original_height=image_height,
            original_width=image_width,
            npatches=vision_encoder_info.get_patch_grid_length(),
            num_patch_height=num_patch_height,
            num_patch_width=num_patch_width,
        )

        return unpadded_feature_size + newline_feature_size + base_feature_size

    # Based on: https://github.com/huggingface/text-generation-inference/blob/v3.0.1/server/text_generation_server/models/vlm_causal_lm.py#L86
    def _get_num_unpadded_features(
        self,
        *,
        original_height: int,
        original_width: int,
        npatches: int,
        num_patch_height: int,
        num_patch_width: int,
    ) -> tuple[int, int]:
        current_height = npatches * num_patch_height
        current_width = npatches * num_patch_width

        aspect_ratio = original_width / original_height
        current_aspect_ratio = current_width / current_height

        if aspect_ratio > current_aspect_ratio:
            new_height = int(
                round(original_height * (current_width / original_width), 7))
            padding = (current_height - new_height) // 2
            current_height = current_height - (2 * padding)
        else:
            new_width = int(
                round(original_width * (current_height / original_height), 7))
            padding = (current_width - new_width) // 2
            current_width = current_width - (2 * padding)

        unpadded_features = current_height * current_width
        newline_features = current_height

        return (unpadded_features, newline_features)

    def get_image_size_with_most_features(self) -> ImageSize:
        hf_config = self.get_hf_config()

        largest_feature_size, largest_feature_pinpoint = 0, None
        for (height, width) in hf_config.image_grid_pinpoints:
            feat_size = self.get_num_image_tokens(image_width=width,
                                                  image_height=height)
            if feat_size > largest_feature_size:
                largest_feature_size = feat_size
                largest_feature_pinpoint = ImageSize(width=width,
                                                     height=height)

        if largest_feature_size == 0 or largest_feature_pinpoint is None:
            raise ValueError("Cannot have a largest feature size of 0!")

        return largest_feature_pinpoint

_get_num_unpadded_features

_get_num_unpadded_features(
    *,
    original_height: int,
    original_width: int,
    npatches: int,
    num_patch_height: int,
    num_patch_width: int,
) -> tuple[int, int]
Source code in vllm/model_executor/models/llava_next.py
def _get_num_unpadded_features(
    self,
    *,
    original_height: int,
    original_width: int,
    npatches: int,
    num_patch_height: int,
    num_patch_width: int,
) -> tuple[int, int]:
    current_height = npatches * num_patch_height
    current_width = npatches * num_patch_width

    aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if aspect_ratio > current_aspect_ratio:
        new_height = int(
            round(original_height * (current_width / original_width), 7))
        padding = (current_height - new_height) // 2
        current_height = current_height - (2 * padding)
    else:
        new_width = int(
            round(original_width * (current_height / original_height), 7))
        padding = (current_width - new_width) // 2
        current_width = current_width - (2 * padding)

    unpadded_features = current_height * current_width
    newline_features = current_height

    return (unpadded_features, newline_features)

get_hf_config

get_hf_config() -> LlavaNextLikeConfig
Source code in vllm/model_executor/models/llava_next.py
def get_hf_config(self) -> LlavaNextLikeConfig:
    return self.ctx.get_hf_config(LlavaNextConfig)

get_hf_processor

get_hf_processor(**kwargs: object)
Source code in vllm/model_executor/models/llava_next.py
def get_hf_processor(self, **kwargs: object):
    hf_processor = self.ctx.get_hf_processor(LlavaNextProcessor, **kwargs)

    # In case patch_size is omitted from `processor_config.json`
    # e.g. for E5-V: https://huggingface.co/royokong/e5-v
    if hf_processor.patch_size is None:
        patch_size = self.get_vision_encoder_info().get_patch_size()
        hf_processor.patch_size = patch_size

    return hf_processor

get_image_size_with_most_features

get_image_size_with_most_features() -> ImageSize
Source code in vllm/model_executor/models/llava_next.py
def get_image_size_with_most_features(self) -> ImageSize:
    hf_config = self.get_hf_config()

    largest_feature_size, largest_feature_pinpoint = 0, None
    for (height, width) in hf_config.image_grid_pinpoints:
        feat_size = self.get_num_image_tokens(image_width=width,
                                              image_height=height)
        if feat_size > largest_feature_size:
            largest_feature_size = feat_size
            largest_feature_pinpoint = ImageSize(width=width,
                                                 height=height)

    if largest_feature_size == 0 or largest_feature_pinpoint is None:
        raise ValueError("Cannot have a largest feature size of 0!")

    return largest_feature_pinpoint

get_num_image_tokens

get_num_image_tokens(
    *, image_width: int, image_height: int
) -> int
Source code in vllm/model_executor/models/llava_next.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    hf_config = self.get_hf_config()
    vision_encoder_info = self.get_vision_encoder_info()

    base_feature_size = self._apply_feature_select_strategy(
        hf_config.vision_feature_select_strategy,
        vision_encoder_info.get_num_image_tokens(
            image_width=image_width,
            image_height=image_height,
        ),
    )

    num_patch_height, num_patch_width = get_anyres_image_grid_shape(
        image_size=(image_height, image_width),
        grid_pinpoints=hf_config.image_grid_pinpoints,
        patch_size=vision_encoder_info.get_image_size(),
    )

    (
        unpadded_feature_size,
        newline_feature_size,
    ) = self._get_num_unpadded_features(
        original_height=image_height,
        original_width=image_width,
        npatches=vision_encoder_info.get_patch_grid_length(),
        num_patch_height=num_patch_height,
        num_patch_width=num_patch_width,
    )

    return unpadded_feature_size + newline_feature_size + base_feature_size