vllm.model_executor.models.qwen3
Inference-only Qwen3 model compatible with HuggingFace weights.
ALL_DECODER_LAYER_TYPES
module-attribute
¶
ALL_DECODER_LAYER_TYPES = {'attention': Qwen3DecoderLayer}
Qwen3ForSequenceClassification
module-attribute
¶
Qwen3ForSequenceClassification = as_seq_cls_model(
Qwen3ForCausalLM
)
Qwen3Attention
¶
Bases: Module
Source code in vllm/model_executor/models/qwen3.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
attn_type=attn_type,
)
o_proj
instance-attribute
¶
o_proj = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
qkv_proj
instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
rotary_emb
instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position,
base=rope_theta,
rope_scaling=rope_scaling,
)
__init__
¶
__init__(
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
head_dim: Optional[int] = None,
rms_norm_eps: float = 1e-06,
qkv_bias: bool = False,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
rope_scaling: Optional[tuple] = None,
prefix: str = "",
attn_type: str = DECODER,
) -> None
Source code in vllm/model_executor/models/qwen3.py
forward
¶
Source code in vllm/model_executor/models/qwen3.py
Qwen3DecoderLayer
¶
Bases: Module
Source code in vllm/model_executor/models/qwen3.py
mlp
instance-attribute
¶
mlp = Qwen2MLP(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
post_attention_layernorm
instance-attribute
¶
post_attention_layernorm = RMSNorm(
hidden_size, eps=rms_norm_eps
)
self_attn
instance-attribute
¶
self_attn = Qwen3Attention(
hidden_size=hidden_size,
num_heads=num_attention_heads,
max_position=max_position_embeddings,
num_kv_heads=num_key_value_heads,
rope_theta=rope_theta,
rms_norm_eps=rms_norm_eps,
qkv_bias=getattr(config, "attention_bias", False),
head_dim=getattr(config, "head_dim", None),
cache_config=cache_config,
quant_config=quant_config,
rope_scaling=rope_scaling,
prefix=f"{prefix}.self_attn",
attn_type=attn_type,
)
__init__
¶
__init__(
config: Qwen3Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen3.py
forward
¶
forward(
positions: Tensor,
hidden_states: Tensor,
residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/qwen3.py
Qwen3ForCausalLM
¶
Bases: Module
, SupportsLoRA
, SupportsPP
Source code in vllm/model_executor/models/qwen3.py
make_empty_intermediate_tensors
instance-attribute
¶
model
instance-attribute
¶
model = Qwen3Model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
packed_modules_mapping
class-attribute
instance-attribute
¶
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen3.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/qwen3.py
get_input_embeddings
¶
load_weights
¶
Source code in vllm/model_executor/models/qwen3.py
Qwen3Model
¶
Bases: Qwen2Model