vllm.model_executor.models.aria
AriaDummyInputsBuilder
¶
Bases: BaseDummyInputsBuilder[AriaProcessingInfo]
Source code in vllm/model_executor/models/aria.py
get_dummy_mm_data
¶
get_dummy_mm_data(
seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/aria.py
get_dummy_text
¶
Source code in vllm/model_executor/models/aria.py
AriaForConditionalGeneration
¶
Bases: Module
, SupportsMultiModal
Aria model for conditional generation tasks.
This model combines a vision tower, a multi-modal projector, and a language model to perform tasks that involve both image and text inputs.
Source code in vllm/model_executor/models/aria.py
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
|
hf_to_vllm_mapper
class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
"model.language_model.": "language_model.model.",
"model.vision_tower.": "vision_tower.",
"model.multi_modal_projector.": "multi_modal_projector.",
"language_model.model": "language_model",
"language_model.lm_head": "lm_head",
},
orig_to_new_suffix={"router.weight": "router_weight"},
)
language_model
instance-attribute
¶
language_model = AriaTextModel(
vllm_config=with_hf_config(text_config),
prefix=maybe_prefix(prefix, "language_model.model"),
)
lm_head
instance-attribute
¶
lm_head = ParallelLMHead(
unpadded_vocab_size,
hidden_size,
org_num_embeddings=org_vocab_size,
quant_config=quant_config,
)
logits_processor
instance-attribute
¶
logits_processor = LogitsProcessor(
unpadded_vocab_size, vocab_size, logit_scale
)
pad_token_id
instance-attribute
¶
vision_tower
instance-attribute
¶
vision_tower = AriaVisionTransformer(
vision_config,
quant_config=quant_config,
prefix=f"{prefix}.vision_tower",
)
__init__
¶
__init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/aria.py
_create_patch_attention_mask
¶
Source code in vllm/model_executor/models/aria.py
_parse_and_validate_image_input
¶
_parse_and_validate_image_input(
**kwargs: object,
) -> Optional[AriaImagePixelInputs]
Source code in vllm/model_executor/models/aria.py
_process_image_input
¶
_process_image_input(
image_input: AriaImagePixelInputs,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/aria.py
_validate_image_sizes
¶
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Tensor
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
**kwargs: object,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/aria.py
get_input_embeddings
¶
get_input_embeddings(
input_ids: Tensor,
multimodal_embeddings: Optional[
MultiModalEmbeddings
] = None,
) -> Tensor
Source code in vllm/model_executor/models/aria.py
get_multimodal_embeddings
¶
get_multimodal_embeddings(
**kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/aria.py
get_placeholder_str
classmethod
¶
AriaFusedMoE
¶
Bases: FusedMoE
Source code in vllm/model_executor/models/aria.py
weight_loader
¶
Source code in vllm/model_executor/models/aria.py
AriaMultiModalProcessor
¶
Bases: BaseMultiModalProcessor[AriaProcessingInfo]
Source code in vllm/model_executor/models/aria.py
_get_mm_fields_config
¶
_get_mm_fields_config(
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/aria.py
_get_prompt_updates
¶
_get_prompt_updates(
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/aria.py
AriaProcessingInfo
¶
Bases: BaseProcessingInfo
Source code in vllm/model_executor/models/aria.py
AriaProjector
¶
Bases: Module
A projection module with one cross attention layer and one FFN layer, which projects ViT's outputs into MoE's inputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
patch_to_query_dict
|
dict
|
Maps patch numbers to their corresponding |
required |
embed_dim
|
int
|
Embedding dimension. |
required |
num_heads
|
int
|
Number of attention heads. |
required |
kv_dim
|
int
|
Dimension of key and value. |
required |
ff_dim
|
int
|
Hidden dimension of the feed-forward network. |
required |
output_dim
|
int
|
Output dimension. |
required |
norm_layer
|
Module
|
Normalization layer. Default is nn.LayerNorm. |
required |
Outputs
A tensor with the shape of (batch_size, query_number, output_dim)
Source code in vllm/model_executor/models/aria.py
feed_forward
instance-attribute
¶
feed_forward = AriaProjectorMLP(
in_features, hidden_features, output_dim
)
query
instance-attribute
¶
query = Parameter(
empty(
max_value_projector_patch_to_query_dict, in_features
)
)
__init__
¶
Source code in vllm/model_executor/models/aria.py
forward
¶
Source code in vllm/model_executor/models/aria.py
AriaProjectorMLP
¶
Bases: Module
Source code in vllm/model_executor/models/aria.py
linear_in
instance-attribute
¶
linear_in = ColumnParallelLinear(
in_features, hidden_features, bias=False
)
linear_out
instance-attribute
¶
linear_out = RowParallelLinear(
hidden_features, output_dim, bias=False
)
__init__
¶
Source code in vllm/model_executor/models/aria.py
forward
¶
AriaTextDecoderLayer
¶
Bases: LlamaDecoderLayer
Custom Decoder Layer for the AriaMoE model which modifies the standard
LlamaDecoderLayer
by replacing the traditional MLP with a Mixture of
Experts (MoE) Layer.
Source code in vllm/model_executor/models/aria.py
mlp
instance-attribute
¶
mlp = AriaTextMoELayer(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
__init__
¶
__init__(
config: AriaTextConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/aria.py
AriaTextMoELayer
¶
Bases: Module
Mixture of Experts (MoE) Layer for the AriaMoE model.
This layer implements the MoE mechanism, which routes input tokens to different experts based on a routing algorithm, processes them through the experts, and then combines the outputs.
Source code in vllm/model_executor/models/aria.py
experts
instance-attribute
¶
experts = AriaFusedMoE(
num_experts=moe_num_experts,
top_k=moe_topk,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
quant_config=quant_config,
reduce_results=True,
prefix=f"{prefix}.experts",
)
router_weight
instance-attribute
¶
router_weight = Parameter(
empty((moe_num_experts, hidden_size))
)
shared_experts
instance-attribute
¶
shared_experts = LlamaMLP(
hidden_size,
intermediate_size * moe_num_shared_experts,
"silu",
quant_config=quant_config,
bias=mlp_bias,
)
__init__
¶
__init__(
config: AriaTextConfig,
quant_config: Optional[QuantizationConfig],
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/aria.py
forward
¶
Forward pass of the MoE Layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hidden_states
|
Tensor
|
Input tensor of shape (batch_size, |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: Output tensor after passing through the MoE layer. |
Source code in vllm/model_executor/models/aria.py
AriaTextModel
¶
Bases: LlamaModel
, SupportsQuant
Custom LlamaModel for the AriaMoE model which modifies the standard
LlamaModel by replacing the LlamaDecoderLayer
with MoEDecoderLayer
.
Source code in vllm/model_executor/models/aria.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
packed_modules_mapping
class-attribute
instance-attribute
¶
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
"experts.w13_weight": ["experts.fc1.weight"],
"experts.w2_weight": ["experts.fc2.weight"],
}
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
load_weights
¶
Source code in vllm/model_executor/models/aria.py
AriaVisionTransformer
¶
Bases: Idefics2VisionTransformer
, SupportsQuant
Source code in vllm/model_executor/models/aria.py
packed_modules_mapping
class-attribute
instance-attribute
¶
__init__
¶
__init__(
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None