vllm.model_executor.models.internlm2
InternLM2Attention
¶
Bases: Module
Source code in vllm/model_executor/models/internlm2.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
rotary_emb
instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
wo
instance-attribute
¶
wo = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wo",
)
wqkv
instance-attribute
¶
wqkv = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wqkv",
)
__init__
¶
__init__(
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/internlm2.py
forward
¶
Source code in vllm/model_executor/models/internlm2.py
split_qkv
¶
split_qkv(qkv: Tensor)
Source code in vllm/model_executor/models/internlm2.py
InternLM2ForCausalLM
¶
Bases: Module
, SupportsPP
, SupportsLoRA
Source code in vllm/model_executor/models/internlm2.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
|
make_empty_intermediate_tensors
instance-attribute
¶
model
instance-attribute
¶
model = model_type(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
output
instance-attribute
¶
output = ParallelLMHead(
vocab_size,
hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "output"),
)
packed_modules_mapping
class-attribute
instance-attribute
¶
__init__
¶
__init__(
*,
vllm_config: VllmConfig,
prefix: str = "",
model_type: type[InternLM2Model] = InternLM2Model,
)
Source code in vllm/model_executor/models/internlm2.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/internlm2.py
get_input_embeddings
¶
load_weights
¶
Source code in vllm/model_executor/models/internlm2.py
InternLM2ForRewardModel
¶
Bases: InternLM2ForCausalLM
Source code in vllm/model_executor/models/internlm2.py
_pooler
instance-attribute
¶
_pooler = from_config_with_defaults(
pooler_config,
pooling_type=ALL,
normalize=False,
softmax=False,
)
v_head
instance-attribute
¶
v_head = RowParallelLinear(
hidden_size,
1,
bias=False,
input_is_parallel=False,
prefix=maybe_prefix(prefix, "v_head"),
)
__init__
¶
__init__(
*,
vllm_config: VllmConfig,
prefix: str = "",
model_type: type[InternLM2Model] = InternLM2Model,
)
Source code in vllm/model_executor/models/internlm2.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/internlm2.py
pooler
¶
pooler(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> Optional[PoolerOutput]
InternLM2MLP
¶
Bases: Module
Source code in vllm/model_executor/models/internlm2.py
gate_up_proj
instance-attribute
¶
gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
w2
instance-attribute
¶
w2 = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.w2",
)
__init__
¶
__init__(
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/internlm2.py
InternLM2Model
¶
Bases: Module
Source code in vllm/model_executor/models/internlm2.py
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], hidden_size
)
)
tok_embeddings
instance-attribute
¶
tok_embeddings = VocabParallelEmbedding(
vocab_size, hidden_size
)
__init__
¶
__init__(
*,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[
InternLMDecoderLayer
] = InternLMDecoderLayer,
)
Source code in vllm/model_executor/models/internlm2.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/internlm2.py
InternLMDecoderLayer
¶
Bases: Module
Source code in vllm/model_executor/models/internlm2.py
attention
instance-attribute
¶
attention = InternLM2Attention(
hidden_size=hidden_size,
num_heads=num_attention_heads,
num_kv_heads=num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
feed_forward
instance-attribute
¶
feed_forward = InternLM2MLP(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
__init__
¶
__init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/internlm2.py
forward
¶
forward(
positions: Tensor,
hidden_states: Tensor,
residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]