Skip to content

vllm.model_executor.models.olmo2

Inference-only OLMo2 model compatible with HuggingFace weights.

Olmo2Attention

Bases: Module

This is the attention block where the output is computed as Attention(LN(x)) in MLP(LN(x + Attention(LN(x)))) (plus another skip connection).

Source code in vllm/model_executor/models/olmo2.py
class Olmo2Attention(nn.Module):
    """
    This is the attention block where the output is computed as
    ``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
    (plus another skip connection).
    """

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        self.config = vllm_config.model_config.hf_config
        assert isinstance(self.config, Olmo2Config)

        hidden_size = self.config.hidden_size
        self.tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = self.config.num_attention_heads

        assert hidden_size % self.total_num_heads == 0
        assert self.total_num_heads % self.tp_size == 0

        self.num_heads = self.total_num_heads // self.tp_size
        self.total_num_kv_heads = (self.config.num_key_value_heads
                                   or self.total_num_heads)
        if self.total_num_kv_heads >= self.tp_size:
            assert self.total_num_kv_heads % self.tp_size == 0
        else:
            assert self.tp_size % self.total_num_kv_heads == 0

        self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.max_position_embeddings = self.config.max_position_embeddings
        self.rope_theta = self.config.rope_theta

        # Attention input projection. Projects x -> (q, k, v)
        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
            quant_config=vllm_config.quant_config,
            prefix=f"{prefix}.qkv_proj",
        )

        self.tp_rank = get_tensor_model_parallel_rank()
        self.k_norm = RMSNorm(
            self.total_num_kv_heads * self.head_dim,
            eps=self.config.rms_norm_eps,
        )
        self.q_norm = RMSNorm(self.config.hidden_size,
                              eps=self.config.rms_norm_eps)

        # Rotary embeddings.
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=self.max_position_embeddings,
            base=self.rope_theta,  # type: ignore
        )
        self.scaling = self.head_dim**-0.5
        self.attn = Attention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            cache_config=vllm_config.cache_config,
            quant_config=vllm_config.quant_config,
            prefix=prefix,
        )

        # Attention output projection.
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=vllm_config.quant_config,
            prefix=f"{prefix}.o_proj",
        )

    def _apply_qk_norm(self, q: torch.Tensor,
                       k: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
        if self.tp_size > 1:
            q = tensor_model_parallel_all_gather(q.contiguous())
            k = tensor_model_parallel_all_gather(k.contiguous())
        q = self.q_norm(q)
        k = self.k_norm(k)
        if self.tp_size > 1:
            splitter = partial(split_tensor_along_last_dim,
                               num_partitions=self.tp_size)
            q = splitter(q)[self.tp_rank]
            k = splitter(k)[self.tp_rank]
        return q, k

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self._apply_qk_norm(q, k)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=prefix,
)

config instance-attribute

config = hf_config

head_dim instance-attribute

head_dim = hidden_size // total_num_heads

k_norm instance-attribute

k_norm = RMSNorm(
    total_num_kv_heads * head_dim, eps=rms_norm_eps
)

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_norm instance-attribute

q_norm = RMSNorm(hidden_size, eps=rms_norm_eps)

q_size instance-attribute

q_size = num_heads * head_dim

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    total_num_kv_heads,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_attention_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = num_key_value_heads or total_num_heads

tp_rank instance-attribute

tp_size instance-attribute

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    self.config = vllm_config.model_config.hf_config
    assert isinstance(self.config, Olmo2Config)

    hidden_size = self.config.hidden_size
    self.tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = self.config.num_attention_heads

    assert hidden_size % self.total_num_heads == 0
    assert self.total_num_heads % self.tp_size == 0

    self.num_heads = self.total_num_heads // self.tp_size
    self.total_num_kv_heads = (self.config.num_key_value_heads
                               or self.total_num_heads)
    if self.total_num_kv_heads >= self.tp_size:
        assert self.total_num_kv_heads % self.tp_size == 0
    else:
        assert self.tp_size % self.total_num_kv_heads == 0

    self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
    self.head_dim = hidden_size // self.total_num_heads
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.max_position_embeddings = self.config.max_position_embeddings
    self.rope_theta = self.config.rope_theta

    # Attention input projection. Projects x -> (q, k, v)
    self.qkv_proj = QKVParallelLinear(
        hidden_size,
        self.head_dim,
        self.total_num_heads,
        self.total_num_kv_heads,
        bias=False,
        quant_config=vllm_config.quant_config,
        prefix=f"{prefix}.qkv_proj",
    )

    self.tp_rank = get_tensor_model_parallel_rank()
    self.k_norm = RMSNorm(
        self.total_num_kv_heads * self.head_dim,
        eps=self.config.rms_norm_eps,
    )
    self.q_norm = RMSNorm(self.config.hidden_size,
                          eps=self.config.rms_norm_eps)

    # Rotary embeddings.
    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=self.max_position_embeddings,
        base=self.rope_theta,  # type: ignore
    )
    self.scaling = self.head_dim**-0.5
    self.attn = Attention(
        self.num_heads,
        self.head_dim,
        self.scaling,
        num_kv_heads=self.num_kv_heads,
        cache_config=vllm_config.cache_config,
        quant_config=vllm_config.quant_config,
        prefix=prefix,
    )

    # Attention output projection.
    self.o_proj = RowParallelLinear(
        self.total_num_heads * self.head_dim,
        hidden_size,
        bias=False,
        quant_config=vllm_config.quant_config,
        prefix=f"{prefix}.o_proj",
    )

_apply_qk_norm

_apply_qk_norm(
    q: Tensor, k: Tensor
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/olmo2.py
def _apply_qk_norm(self, q: torch.Tensor,
                   k: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
    if self.tp_size > 1:
        q = tensor_model_parallel_all_gather(q.contiguous())
        k = tensor_model_parallel_all_gather(k.contiguous())
    q = self.q_norm(q)
    k = self.k_norm(k)
    if self.tp_size > 1:
        splitter = partial(split_tensor_along_last_dim,
                           num_partitions=self.tp_size)
        q = splitter(q)[self.tp_rank]
        k = splitter(k)[self.tp_rank]
    return q, k

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/olmo2.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    q, k = self._apply_qk_norm(q, k)
    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

Olmo2DecoderLayer

Bases: Module

This is a typical transformer block where the output is computed as MLP(LN(x + Attention(LN(x)))) (plus another skip connection).

Source code in vllm/model_executor/models/olmo2.py
class Olmo2DecoderLayer(nn.Module):
    """
    This is a typical transformer block where the output is
    computed as ``MLP(LN(x + Attention(LN(x))))``
    (plus another skip connection).
    """

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        assert isinstance(config, Olmo2Config)
        # Attention block.
        self.self_attn = Olmo2Attention(vllm_config=vllm_config,
                                        prefix=f"{prefix}.self_attn")

        # MLP block.
        self.mlp = Olmo2MLP(vllm_config=vllm_config, prefix=f"{prefix}.mlp")

        # LayerNorm
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

        self.post_feedforward_layernorm = RMSNorm(config.hidden_size,
                                                  eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        # Attention block.
        residual = hidden_states
        hidden_states = self.self_attn(positions, hidden_states)
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = hidden_states + residual

        # MLP block.
        residual = hidden_states
        hidden_states = self.mlp(hidden_states)
        hidden_states = self.post_feedforward_layernorm(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states

mlp instance-attribute

mlp = Olmo2MLP(
    vllm_config=vllm_config, prefix=f"{prefix}.mlp"
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

post_feedforward_layernorm instance-attribute

post_feedforward_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

self_attn instance-attribute

self_attn = Olmo2Attention(
    vllm_config=vllm_config, prefix=f"{prefix}.self_attn"
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    assert isinstance(config, Olmo2Config)
    # Attention block.
    self.self_attn = Olmo2Attention(vllm_config=vllm_config,
                                    prefix=f"{prefix}.self_attn")

    # MLP block.
    self.mlp = Olmo2MLP(vllm_config=vllm_config, prefix=f"{prefix}.mlp")

    # LayerNorm
    self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                            eps=config.rms_norm_eps)

    self.post_feedforward_layernorm = RMSNorm(config.hidden_size,
                                              eps=config.rms_norm_eps)

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/olmo2.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    # Attention block.
    residual = hidden_states
    hidden_states = self.self_attn(positions, hidden_states)
    hidden_states = self.post_attention_layernorm(hidden_states)
    hidden_states = hidden_states + residual

    # MLP block.
    residual = hidden_states
    hidden_states = self.mlp(hidden_states)
    hidden_states = self.post_feedforward_layernorm(hidden_states)
    hidden_states = residual + hidden_states
    return hidden_states

Olmo2ForCausalLM

Bases: Module, SupportsPP

Extremely barebones HF model wrapper.

Source code in vllm/model_executor/models/olmo2.py
class Olmo2ForCausalLM(nn.Module, SupportsPP):
    """
    Extremely barebones HF model wrapper.
    """

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        assert isinstance(config, Olmo2Config)
        self.config = config
        self.model = Olmo2Model(vllm_config=vllm_config,
                                prefix=maybe_prefix(prefix, "model"))
        if config.tie_word_embeddings:
            self.lm_head = self.model.embed_tokens
        else:
            self.unpadded_vocab_size = config.vocab_size
            self.lm_head = ParallelLMHead(
                config.vocab_size,
                config.hidden_size,
                org_num_embeddings=config.vocab_size,
                quant_config=vllm_config.quant_config,
                prefix=maybe_prefix(prefix, "lm_head"),
            )
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
        loader = AutoWeightsLoader(
            self,
            skip_prefixes=(["lm_head.weight"]
                           if self.config.tie_word_embeddings else None),
        )
        return loader.load_weights(weights)

config instance-attribute

config = config

lm_head instance-attribute

lm_head = embed_tokens

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = Olmo2Model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

unpadded_vocab_size instance-attribute

unpadded_vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    assert isinstance(config, Olmo2Config)
    self.config = config
    self.model = Olmo2Model(vllm_config=vllm_config,
                            prefix=maybe_prefix(prefix, "model"))
    if config.tie_word_embeddings:
        self.lm_head = self.model.embed_tokens
    else:
        self.unpadded_vocab_size = config.vocab_size
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            quant_config=vllm_config.quant_config,
            prefix=maybe_prefix(prefix, "lm_head"),
        )
    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/olmo2.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/olmo2.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    hidden_states = self.model(
        input_ids=input_ids,
        positions=positions,
        intermediate_tensors=intermediate_tensors,
        inputs_embeds=inputs_embeds,
    )
    return hidden_states

load_weights

load_weights(weights: Iterable[tuple[str, Tensor]])
Source code in vllm/model_executor/models/olmo2.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
    loader = AutoWeightsLoader(
        self,
        skip_prefixes=(["lm_head.weight"]
                       if self.config.tie_word_embeddings else None),
    )
    return loader.load_weights(weights)

Olmo2MLP

Bases: Module

This is the MLP block where the output is computed as MLP(x) in LN(MLP(x + LN(Attention(x)))) (plus another skip connection).

Source code in vllm/model_executor/models/olmo2.py
class Olmo2MLP(nn.Module):
    """
    This is the MLP block where the output is computed as
    ``MLP(x)`` in ``LN(MLP(x + LN(Attention(x))))``
    (plus another skip connection).
    """

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        assert isinstance(config, Olmo2Config)
        hidden_size = config.hidden_size
        intermediate_size = config.intermediate_size

        # Feed-forward input projection.
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=vllm_config.quant_config,
            prefix=f"{prefix}.gate_up_proj",
        )

        # Activation function.
        self.act_fn = SiluAndMul()

        # Feed-forward output projection.
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=vllm_config.quant_config,
            prefix=f"{prefix}.down_proj",
        )

    def forward(
        self,
        x: torch.Tensor,
    ) -> torch.Tensor:
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x

act_fn instance-attribute

act_fn = SiluAndMul()

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.down_proj",
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    hidden_size,
    [intermediate_size] * 2,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_up_proj",
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    assert isinstance(config, Olmo2Config)
    hidden_size = config.hidden_size
    intermediate_size = config.intermediate_size

    # Feed-forward input projection.
    self.gate_up_proj = MergedColumnParallelLinear(
        hidden_size,
        [intermediate_size] * 2,
        bias=False,
        quant_config=vllm_config.quant_config,
        prefix=f"{prefix}.gate_up_proj",
    )

    # Activation function.
    self.act_fn = SiluAndMul()

    # Feed-forward output projection.
    self.down_proj = RowParallelLinear(
        intermediate_size,
        hidden_size,
        bias=False,
        quant_config=vllm_config.quant_config,
        prefix=f"{prefix}.down_proj",
    )

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/olmo2.py
def forward(
    self,
    x: torch.Tensor,
) -> torch.Tensor:
    gate_up, _ = self.gate_up_proj(x)
    x = self.act_fn(gate_up)
    x, _ = self.down_proj(x)
    return x

Olmo2Model

Bases: Module

Source code in vllm/model_executor/models/olmo2.py
class Olmo2Model(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        self.config = vllm_config.model_config.hf_config
        assert isinstance(self.config, Olmo2Config)

        self.embed_tokens = VocabParallelEmbedding(
            self.config.vocab_size,
            self.config.hidden_size,
            prefix=f"{prefix}.embed_tokens",
        )
        self.start_layer, self.end_layer, self.layers = make_layers(
            self.config.num_hidden_layers,
            lambda prefix: Olmo2DecoderLayer(vllm_config=vllm_config,
                                             prefix=prefix),
            prefix=f"{prefix}.layers",
        )
        self.norm = RMSNorm(
            self.config.hidden_size,
            eps=self.config.rms_norm_eps,
        )
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(["hidden_states"],
                                                    self.config.hidden_size))

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        """
        :param input_ids: A tensor of shape `(batch_size, seq_len)`.
        """
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            # Get embeddings of input.
            # shape: (batch_size, seq_len, d_model)
            else:
                hidden_states = self.embed_tokens(input_ids)

        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            assert isinstance(hidden_states, torch.Tensor)

        # Apply blocks one-by-one.
        for layer in self.layers[self.start_layer:self.end_layer]:
            # shape: (batch_size, seq_len, d_model)
            hidden_states = layer(positions, hidden_states)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({"hidden_states": hidden_states})

        # Apply final layer norm.
        # shape: (batch_size, seq_len or 1, d_model)
        hidden_states = self.norm(hidden_states)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        params_dict = dict(self.named_parameters(remove_duplicate=False))
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if is_pp_missing_parameter(name, self):
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader  # type: ignore
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = hf_config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size, prefix=f"{prefix}.embed_tokens"
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states"], hidden_size
    )
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    self.config = vllm_config.model_config.hf_config
    assert isinstance(self.config, Olmo2Config)

    self.embed_tokens = VocabParallelEmbedding(
        self.config.vocab_size,
        self.config.hidden_size,
        prefix=f"{prefix}.embed_tokens",
    )
    self.start_layer, self.end_layer, self.layers = make_layers(
        self.config.num_hidden_layers,
        lambda prefix: Olmo2DecoderLayer(vllm_config=vllm_config,
                                         prefix=prefix),
        prefix=f"{prefix}.layers",
    )
    self.norm = RMSNorm(
        self.config.hidden_size,
        eps=self.config.rms_norm_eps,
    )
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(["hidden_states"],
                                                self.config.hidden_size))

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]

:param input_ids: A tensor of shape (batch_size, seq_len).

Source code in vllm/model_executor/models/olmo2.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    """
    :param input_ids: A tensor of shape `(batch_size, seq_len)`.
    """
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        # Get embeddings of input.
        # shape: (batch_size, seq_len, d_model)
        else:
            hidden_states = self.embed_tokens(input_ids)

    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        assert isinstance(hidden_states, torch.Tensor)

    # Apply blocks one-by-one.
    for layer in self.layers[self.start_layer:self.end_layer]:
        # shape: (batch_size, seq_len, d_model)
        hidden_states = layer(positions, hidden_states)

    if not get_pp_group().is_last_rank:
        return IntermediateTensors({"hidden_states": hidden_states})

    # Apply final layer norm.
    # shape: (batch_size, seq_len or 1, d_model)
    hidden_states = self.norm(hidden_states)
    return hidden_states

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/olmo2.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
    ]

    params_dict = dict(self.named_parameters(remove_duplicate=False))
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if is_pp_missing_parameter(name, self):
            continue
        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader  # type: ignore
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params