vllm.model_executor.models.chatglm
Inference-only ChatGLM model compatible with THUDM weights.
ChatGLMBaseModel
¶
Bases: Module
Source code in vllm/model_executor/models/chatglm.py
hf_to_vllm_mapper
class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={".word_embeddings": ""}
)
make_empty_intermediate_tensors
instance-attribute
¶
max_position_embeddings
instance-attribute
¶
max_position_embeddings = getattr(
config, "max_sequence_length", 8192
)
transformer
instance-attribute
¶
transformer = transformer_type(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__
¶
__init__(
*,
vllm_config: VllmConfig,
prefix: str = "",
transformer_type: type[ChatGLMModel] = ChatGLMModel,
) -> None
Source code in vllm/model_executor/models/chatglm.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
ChatGLMForCausalLM
¶
Bases: ChatGLMBaseModel
, SupportsLoRA
, SupportsPP
, SupportsQuant
Source code in vllm/model_executor/models/chatglm.py
packed_modules_mapping
class-attribute
instance-attribute
¶
packed_modules_mapping = {
"query_key_value": ["query_key_value"],
"dense_h_to_4h": ["dense_h_to_4h"],
}
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/chatglm.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/chatglm.py
ChatGLMModel
¶
Bases: Module
, SupportsQuant
Source code in vllm/model_executor/models/chatglm.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
embedding
instance-attribute
¶
embedding = VocabParallelEmbedding(
padded_vocab_size,
hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embedding",
)
encoder
instance-attribute
¶
encoder = GLMTransformer(
config,
cache_config,
quant_config,
prefix=f"{prefix}.encoder",
)
make_empty_intermediate_tensors
instance-attribute
¶
output_layer
instance-attribute
¶
output_layer = ParallelLMHead(
padded_vocab_size,
hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.output_layer",
)
packed_modules_mapping
class-attribute
instance-attribute
¶
packed_modules_mapping = {
"linear_proj.merged_proj": [
"linear_proj.gate_proj",
"linear_proj.dense_h_to_4h",
]
}
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/chatglm.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
**kwargs: object,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/chatglm.py
get_input_embeddings
¶
load_weights
¶
Source code in vllm/model_executor/models/chatglm.py
GLMAttention
¶
Bases: Module
Source code in vllm/model_executor/models/chatglm.py
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
dense
instance-attribute
¶
dense = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=add_bias_linear,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
query_key_value
instance-attribute
¶
query_key_value = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=add_bias_linear or add_qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.query_key_value",
)
rotary_emb
instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim // 2,
max_position=max_positions,
base=10000 * rope_ratio,
is_neox_style=is_neox_style,
)
total_num_kv_heads
instance-attribute
¶
__init__
¶
__init__(
config: ChatGLMConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/chatglm.py
forward
¶
Source code in vllm/model_executor/models/chatglm.py
GLMBlock
¶
Bases: Module
A single transformer layer.
Transformer layer takes input with size [s, b, h] and returns an output of the same size.
Source code in vllm/model_executor/models/chatglm.py
apply_residual_connection_post_layernorm
instance-attribute
¶
input_layernorm
instance-attribute
¶
post_attention_layernorm
instance-attribute
¶
self_attention
instance-attribute
¶
self_attention = GLMAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.self_attention",
)
__init__
¶
__init__(
config: ChatGLMConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/chatglm.py
forward
¶
Source code in vllm/model_executor/models/chatglm.py
GLMMLP
¶
Bases: Module
MLP.
MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation, and project the state back into h hidden dimension.
Source code in vllm/model_executor/models/chatglm.py
dense_4h_to_h
instance-attribute
¶
dense_4h_to_h = RowParallelLinear(
ffn_hidden_size,
hidden_size,
bias=add_bias_linear,
quant_config=quant_config,
prefix=f"{prefix}.dense_4h_to_h",
)
dense_h_to_4h
instance-attribute
¶
dense_h_to_4h = MergedColumnParallelLinear(
hidden_size,
[ffn_hidden_size] * 2,
bias=add_bias_linear,
quant_config=quant_config,
prefix=f"{prefix}.dense_h_to_4h",
)
__init__
¶
__init__(
config: ChatGLMConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/chatglm.py
forward
¶
Source code in vllm/model_executor/models/chatglm.py
GLMTransformer
¶
Bases: Module
Transformer class.
Source code in vllm/model_executor/models/chatglm.py
final_layernorm
instance-attribute
¶
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], hidden_size
)
)
__init__
¶
__init__(
config: ChatGLMConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/chatglm.py
forward
¶
forward(
hidden_states: Tensor, position_ids: Tensor
) -> Union[Tensor, IntermediateTensors]