vllm.model_executor.models.whisper
ISO639_1_OTHER_LANGS
module-attribute
¶
ISO639_1_OTHER_LANGS = {
"lo": "Lao",
"jw": "Javanese",
"tk": "Turkmen",
"yi": "Yiddish",
"so": "Somali",
"bn": "Bengali",
"nn": "Norwegian Nynorsk",
"si": "Sinhala",
"yo": "Yoruba",
"sa": "Sanskrit",
"mi": "Māori",
"fo": "Faroese",
"mt": "Maltese",
"tg": "Tajik",
"mg": "Malagasy",
"haw": "Hawaiian",
"km": "Khmer",
"br": "Breton",
"ps": "Pashto",
"ln": "Lingala",
"la": "Latin",
"ml": "Malayalam",
"sq": "Albanian",
"su": "Sundanese",
"eu": "Basque",
"ka": "Georgian",
"uz": "Uzbek",
"sn": "Shona",
"ht": "Haitian",
"as": "Assamese",
"mn": "Mongolian",
"te": "Telugu",
"pa": "Panjabi",
"tt": "Tatar",
"gu": "Gujarati",
"oc": "Occitan",
"ha": "Hausa",
"ba": "Bashkir",
"my": "Burmese",
"sd": "Sindhi",
"am": "Amharic",
"lb": "Luxembourgish",
"bo": "Tibetan",
}
ISO639_1_SUPPORTED_LANGS
module-attribute
¶
ISO639_1_SUPPORTED_LANGS = {
"af": "Afrikaans",
"ar": "Arabic",
"hy": "Armenian",
"az": "Azerbaijani",
"be": "Belarusian",
"bs": "Bosnian",
"bg": "Bulgarian",
"ca": "Catalan",
"zh": "Chinese",
"hr": "Croatian",
"cs": "Czech",
"da": "Danish",
"nl": "Dutch",
"en": "English",
"et": "Estonian",
"fi": "Finnish",
"fr": "French",
"gl": "Galician",
"de": "German",
"el": "Greek",
"he": "Hebrew",
"hi": "Hindi",
"hu": "Hungarian",
"is": "Icelandic",
"id": "Indonesian",
"it": "Italian",
"ja": "Japanese",
"kn": "Kannada",
"kk": "Kazakh",
"ko": "Korean",
"lv": "Latvian",
"lt": "Lithuanian",
"mk": "Macedonian",
"ms": "Malay",
"mr": "Marathi",
"mi": "Maori",
"ne": "Nepali",
"no": "Norwegian",
"fa": "Persian",
"pl": "Polish",
"pt": "Portuguese",
"ro": "Romanian",
"ru": "Russian",
"sr": "Serbian",
"sk": "Slovak",
"sl": "Slovenian",
"es": "Spanish",
"sw": "Swahili",
"sv": "Swedish",
"tl": "Tagalog",
"ta": "Tamil",
"th": "Thai",
"tr": "Turkish",
"uk": "Ukrainian",
"ur": "Urdu",
"vi": "Vietnamese",
"cy": "Welsh",
}
WhisperAttention
¶
Bases: Module
Source code in vllm/model_executor/models/whisper.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
attn_type=attn_type,
)
out_proj
instance-attribute
¶
out_proj = RowParallelLinear(
input_size=embed_dim,
output_size=embed_dim,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
__init__
¶
__init__(
embed_dim: int,
num_heads: int,
bias: bool = True,
attn_type: AttentionType = DECODER,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/whisper.py
_init_qkv
¶
_init_qkv(
embed_dim: int,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/whisper.py
WhisperAudioInputs
¶
WhisperCrossAttention
¶
Bases: WhisperAttention
Source code in vllm/model_executor/models/whisper.py
__init__
¶
__init__(
embed_dim: int,
num_heads: int,
bias: bool = True,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/whisper.py
_init_qkv
¶
_init_qkv(
embed_dim: int,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/whisper.py
forward
¶
Source code in vllm/model_executor/models/whisper.py
WhisperDecoder
¶
Bases: Module
Source code in vllm/model_executor/models/whisper.py
embed_positions
instance-attribute
¶
embed_positions = WhisperPositionalEmbedding(
max_target_positions, d_model
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/whisper.py
forward
¶
Source code in vllm/model_executor/models/whisper.py
WhisperDecoderLayer
¶
Bases: Module
Source code in vllm/model_executor/models/whisper.py
encoder_attn
instance-attribute
¶
encoder_attn = WhisperCrossAttention(
embed_dim=d_model,
num_heads=decoder_attention_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.encoder_attn",
)
mlp
instance-attribute
¶
mlp = WhisperMLP(
embed_dim=d_model,
ffn_dim=decoder_ffn_dim,
act_fn=activation_function,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self_attn
instance-attribute
¶
self_attn = WhisperAttention(
embed_dim=d_model,
num_heads=decoder_attention_heads,
attn_type=DECODER,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/whisper.py
forward
¶
Source code in vllm/model_executor/models/whisper.py
WhisperDummyInputsBuilder
¶
Bases: BaseDummyInputsBuilder[WhisperProcessingInfo]
Source code in vllm/model_executor/models/whisper.py
get_dummy_mm_data
¶
get_dummy_mm_data(
seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/whisper.py
WhisperEncoder
¶
Bases: Module
Source code in vllm/model_executor/models/whisper.py
conv2
instance-attribute
¶
conv2 = Conv1d(
embed_dim, embed_dim, kernel_size=3, stride=2, padding=1
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/whisper.py
forward
¶
Source code in vllm/model_executor/models/whisper.py
WhisperEncoderLayer
¶
Bases: Module
Source code in vllm/model_executor/models/whisper.py
mlp
instance-attribute
¶
mlp = WhisperMLP(
embed_dim=d_model,
ffn_dim=encoder_ffn_dim,
act_fn=activation_function,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self_attn
instance-attribute
¶
self_attn = WhisperAttention(
embed_dim=embed_dim,
num_heads=encoder_attention_heads,
attn_type=ENCODER,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/whisper.py
forward
¶
forward(hidden_states: Tensor)
Source code in vllm/model_executor/models/whisper.py
WhisperForConditionalGeneration
¶
Bases: Module
, SupportsTranscription
, SupportsMultiModal
, SupportsV0Only
Source code in vllm/model_executor/models/whisper.py
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 |
|
hf_to_vllm_mapper
class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
".fc1.": ".mlp.fc1.",
".fc2.": ".mlp.fc2.",
}
)
logits_processor
instance-attribute
¶
logits_processor = LogitsProcessor(
unpadded_vocab_size, vocab_size, logit_scale
)
packed_modules_mapping
class-attribute
instance-attribute
¶
packed_modules_mapping = {
"self_attn.qkv_proj": [
"self_attn.q_proj",
"self_attn.k_proj",
"self_attn.v_proj",
],
"encoder_attn.kv_proj": [
"encoder_attn.k_proj",
"encoder_attn.v_proj",
],
}
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/whisper.py
_parse_and_validate_audio_input
¶
_parse_and_validate_audio_input(
**kwargs: object,
) -> WhisperAudioInputs
Source code in vllm/model_executor/models/whisper.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Tensor
forward
¶
Source code in vllm/model_executor/models/whisper.py
get_decoder_prompt
classmethod
¶
get_input_embeddings
¶
get_input_embeddings(
input_ids: Tensor,
multimodal_embeddings: Optional[NestedTensors] = None,
) -> Tensor
Source code in vllm/model_executor/models/whisper.py
get_multimodal_embeddings
¶
get_multimodal_embeddings(
**kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/whisper.py
get_placeholder_str
classmethod
¶
load_weights
¶
Source code in vllm/model_executor/models/whisper.py
validate_language
classmethod
¶
Source code in vllm/model_executor/models/whisper.py
WhisperMLP
¶
Bases: Module
Source code in vllm/model_executor/models/whisper.py
fc1
instance-attribute
¶
fc1 = ColumnParallelLinear(
input_size=embed_dim,
output_size=ffn_dim,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
fc2
instance-attribute
¶
fc2 = RowParallelLinear(
input_size=ffn_dim,
output_size=embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
__init__
¶
__init__(
embed_dim: int,
ffn_dim: int,
act_fn: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/whisper.py
WhisperModel
¶
Bases: Module
Source code in vllm/model_executor/models/whisper.py
decoder
instance-attribute
¶
decoder = WhisperDecoder(
vllm_config=vllm_config, prefix=f"{prefix}.decoder"
)
encoder
instance-attribute
¶
encoder = WhisperEncoder(
vllm_config=vllm_config, prefix=f"{prefix}.encoder"
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/whisper.py
forward
¶
forward(
input_features: Optional[Union[Tensor, list[Tensor]]],
input_ids: Optional[Tensor],
positions: Tensor,
) -> Tensor
Source code in vllm/model_executor/models/whisper.py
get_encoder_outputs
¶
load_weights
¶
Source code in vllm/model_executor/models/whisper.py
WhisperMultiModalProcessor
¶
Bases: EncDecMultiModalProcessor[WhisperProcessingInfo]
Source code in vllm/model_executor/models/whisper.py
_call_hf_processor
¶
_call_hf_processor(
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/whisper.py
_get_data_parser
¶
_get_data_parser() -> MultiModalDataParser
_get_mm_fields_config
¶
_get_prompt_updates
¶
_get_prompt_updates(
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/whisper.py
create_encoder_prompt
¶
create_encoder_prompt(
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
) -> Union[str, list[int]]
Source code in vllm/model_executor/models/whisper.py
WhisperPositionalEmbedding
¶
WhisperProcessingInfo
¶
Bases: BaseProcessingInfo
Source code in vllm/model_executor/models/whisper.py
_create_fake_bias_for_k_proj
¶
_create_fake_bias_for_k_proj(
weights: Iterable[tuple[str, Tensor]],
) -> Iterable[tuple[str, Tensor]]
Create full zeros bias for k_proj weight in self-attn and x-attn layers. So that the bias for k_proj in qkv_proj can be initialized with zeros.