vllm.beam_search
BeamSearchInstance
¶
Source code in vllm/beam_search.py
beams
instance-attribute
¶
beams: list[BeamSearchSequence] = [
BeamSearchSequence(
tokens=prompt_tokens,
logprobs=[] if logprobs is None else list(logprobs),
lora_request=lora_request,
**kwargs,
)
]
__init__
¶
__init__(
prompt_tokens: list[int],
lora_request: Optional[LoRARequest] = None,
logprobs: Optional[list[dict[int, Logprob]]] = None,
**kwargs,
)
Source code in vllm/beam_search.py
BeamSearchOutput
dataclass
¶
The output of beam search. It contains the list of the best beam search sequences. The length of the list is equal to the beam width.
Source code in vllm/beam_search.py
BeamSearchSequence
dataclass
¶
A sequence for beam search. It keeps track of the tokens and the log probability of the sequence. The text field is optional and will only be filled when the sequence is about to be returned to the user.
Source code in vllm/beam_search.py
mm_processor_kwargs
class-attribute
instance-attribute
¶
multi_modal_data
class-attribute
instance-attribute
¶
multi_modal_data: Optional[MultiModalDataDict] = None
__init__
¶
__init__(
tokens: list[int],
logprobs: list[dict[int, Logprob]],
lora_request: Optional[LoRARequest] = None,
cum_logprob: float = 0.0,
text: Optional[str] = None,
finish_reason: Optional[str] = None,
stop_reason: Union[int, str, None] = None,
multi_modal_data: Optional[MultiModalDataDict] = None,
mm_processor_kwargs: Optional[dict[str, Any]] = None,
) -> None
create_sort_beams_key_function
¶
get_beam_search_score
¶
get_beam_search_score(
tokens: list[int],
cumulative_logprob: float,
eos_token_id: int,
length_penalty: float = 1.0,
) -> float
Calculate the beam search score with length penalty.
Adapted from
https://github.com/huggingface/transformers/blob/ccb92be23def445f2afdea94c31286f84b89eb5b/src/transformers/generation/beam_search.py#L938