vllm.model_executor.models.gpt2
Inference-only GPT-2 model compatible with HuggingFace weights.
GPT2Attention
¶
Bases: Module
Source code in vllm/model_executor/models/gpt2.py
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scale=scale,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
c_attn
instance-attribute
¶
c_attn = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_attn",
)
c_proj
instance-attribute
¶
c_proj = RowParallelLinear(
hidden_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
__init__
¶
__init__(
config: GPT2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/gpt2.py
forward
¶
Source code in vllm/model_executor/models/gpt2.py
GPT2Block
¶
Bases: Module
Source code in vllm/model_executor/models/gpt2.py
attn
instance-attribute
¶
attn = GPT2Attention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.attn",
)
__init__
¶
__init__(
config: GPT2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/gpt2.py
forward
¶
Source code in vllm/model_executor/models/gpt2.py
GPT2ForSequenceClassification
¶
Bases: Module
GPT2 Model for sequence classification.
This class expands GPT2Model with pooling and score functions - last token is being used for classification.
Attributes:
Name | Type | Description |
---|---|---|
transformer |
An instance of GPT2Model used for forward operations. |
|
score |
A layer for calculating logits. |
|
_pooler |
An instance of Pooler used for pooling operations. |
Source code in vllm/model_executor/models/gpt2.py
_pooler
instance-attribute
¶
_pooler = from_config_with_defaults(
pooler_config,
pooling_type=LAST,
normalize=False,
softmax=True,
)
transformer
instance-attribute
¶
transformer = GPT2Model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "gpt2"),
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt2.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/gpt2.py
load_weights
¶
pooler
¶
pooler(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> Optional[PoolerOutput]
GPT2LMHeadModel
¶
Bases: Module
, SupportsPP
Source code in vllm/model_executor/models/gpt2.py
lm_head
instance-attribute
¶
lm_head = ParallelLMHead(
vocab_size,
hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.lm_head",
)
make_empty_intermediate_tensors
instance-attribute
¶
transformer
instance-attribute
¶
transformer = GPT2Model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt2.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/gpt2.py
get_input_embeddings
¶
load_weights
¶
GPT2MLP
¶
Bases: Module
Source code in vllm/model_executor/models/gpt2.py
c_fc
instance-attribute
¶
c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_fc",
)
c_proj
instance-attribute
¶
c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
__init__
¶
__init__(
intermediate_size: int,
config: GPT2Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/gpt2.py
forward
¶
GPT2Model
¶
Bases: Module
Source code in vllm/model_executor/models/gpt2.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], n_embd
)
)
wte
instance-attribute
¶
wte = VocabParallelEmbedding(
vocab_size,
embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.wte",
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt2.py
forward
¶
forward(
input_ids: Tensor,
position_ids: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor],
) -> Union[Tensor, IntermediateTensors]