Skip to content

vllm.model_executor.models.qwen2_5_vl

Inference-only Qwen2.5-VL model compatible with HuggingFace weights.

Qwen2_5_VLImageInputs module-attribute

Qwen2_5_VLVideoInputs module-attribute

logger module-attribute

logger = init_logger(__name__)

Qwen2_5_VLForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsLoRA, SupportsPP, SupportsQuant

Source code in vllm/model_executor/models/qwen2_5_vl.py
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
@MULTIMODAL_REGISTRY.register_processor(
    Qwen2_5_VLMultiModalProcessor,
    info=Qwen2_5_VLProcessingInfo,
    dummy_inputs=Qwen2_5_VLDummyInputsBuilder)
class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
                                         SupportsLoRA, SupportsPP,
                                         SupportsQuant):

    # To ensure correct weight loading and mapping.
    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            # mapping for new names in checkpoint saved after transformers v4.52
            "model.language_model.": "language_model.model.",
            "model.visual.": "visual.",
            # mapping for original checkpoint
            "lm_head.": "language_model.lm_head.",
            "model.": "language_model.model.",
        })

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("image"):
            return "<|vision_start|><|image_pad|><|vision_end|>"
        if modality.startswith("video"):
            return "<|vision_start|><|video_pad|><|vision_end|>"

        raise ValueError("Only image or video modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
        multimodal_config = vllm_config.model_config.multimodal_config

        self.config = config
        self.multimodal_config = multimodal_config

        self.visual = Qwen2_5_VisionTransformer(
            config.vision_config,
            norm_eps=getattr(config, "rms_norm_eps", 1e-6),
            quant_config=self._maybe_ignore_quant_config(self.quant_config),
            prefix=maybe_prefix(prefix, "visual"),
        )

        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            prefix=maybe_prefix(prefix, "language_model"),
            architectures=["Qwen2ForCausalLM"],
        )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors)

    def _maybe_ignore_quant_config(self, config: Optional[QuantizationConfig]):
        # GPTQ configs do not have a list of ignored modules, however AutoGPTQ
        # seems to avoid vision encoder sections for some models.
        if isinstance(config, (GPTQConfig, GPTQMarlinConfig)):
            return None
        return config

    def _validate_and_reshape_mm_tensor(self, mm_input: object,
                                        name: str) -> torch.Tensor:
        if not isinstance(mm_input, (torch.Tensor, list)):
            raise ValueError(f"Incorrect type of {name}. "
                             f"Got type: {type(mm_input)}")
        if isinstance(mm_input, torch.Tensor):
            if mm_input.ndim == 2:
                return mm_input
            if mm_input.ndim != 3:
                raise ValueError(f"{name} should be 2D or batched 3D tensor. "
                                 f"Got ndim: {mm_input.ndim} "
                                 f"(shape={mm_input.shape})")
            return torch.concat(list(mm_input))
        else:
            return torch.concat(mm_input)

    def _parse_and_validate_image_input(
            self, **kwargs: object) -> Optional[Qwen2_5_VLImageInputs]:
        pixel_values = kwargs.pop("pixel_values", None)
        image_embeds = kwargs.pop("image_embeds", None)
        image_grid_thw = kwargs.pop("image_grid_thw", None)

        if pixel_values is None and image_embeds is None:
            return None

        if pixel_values is not None:
            pixel_values = self._validate_and_reshape_mm_tensor(
                pixel_values, "image pixel values")
            image_grid_thw = self._validate_and_reshape_mm_tensor(
                image_grid_thw, "image grid_thw")

            if not isinstance(pixel_values, (torch.Tensor, list)):
                raise ValueError("Incorrect type of image pixel values. "
                                 f"Got type: {type(pixel_values)}")

            return Qwen2_5_VLImagePixelInputs(type="pixel_values",
                                              pixel_values=pixel_values,
                                              image_grid_thw=image_grid_thw)

        if image_embeds is not None:
            image_embeds = self._validate_and_reshape_mm_tensor(
                image_embeds, "image embeds")
            image_grid_thw = self._validate_and_reshape_mm_tensor(
                image_grid_thw, "image grid_thw")

            if not isinstance(image_embeds, torch.Tensor):
                raise ValueError("Incorrect type of image embeddings. "
                                 f"Got type: {type(image_embeds)}")
            return Qwen2_5_VLImageEmbeddingInputs(
                type="image_embeds",
                image_embeds=image_embeds,
                image_grid_thw=image_grid_thw)

    def _parse_and_validate_video_input(
            self, **kwargs: object) -> Optional[Qwen2_5_VLVideoInputs]:
        pixel_values_videos = kwargs.pop("pixel_values_videos", None)
        video_embeds = kwargs.pop("video_embeds", None)
        video_grid_thw = kwargs.pop("video_grid_thw", None)
        second_per_grid_ts = kwargs.pop("second_per_grid_ts", None)

        if pixel_values_videos is None and video_embeds is None:
            return None

        if pixel_values_videos is not None:
            pixel_values_videos = self._validate_and_reshape_mm_tensor(
                pixel_values_videos, "video pixel values")
            video_grid_thw = self._validate_and_reshape_mm_tensor(
                video_grid_thw, "video grid_thw")

            return Qwen2_5_VLVideoPixelInputs(
                type="pixel_values_videos",
                pixel_values_videos=pixel_values_videos,
                video_grid_thw=video_grid_thw,
                second_per_grid_ts=second_per_grid_ts,
            )

        if video_embeds is not None:
            video_embeds = self._validate_and_reshape_mm_tensor(
                video_embeds, "video embeds")
            video_grid_thw = self._validate_and_reshape_mm_tensor(
                video_grid_thw, "video grid_thw")

            if not isinstance(video_embeds, torch.Tensor):
                raise ValueError("Incorrect type of video embeddings. "
                                 f"Got type: {type(video_embeds)}")
            return Qwen2_5_VLVideoEmbeddingInputs(
                type="video_embeds",
                video_embeds=video_embeds,
                video_grid_thw=video_grid_thw)

    def _process_image_input(
            self,
            image_input: Qwen2_5_VLImageInputs) -> tuple[torch.Tensor, ...]:

        grid_thw = image_input["image_grid_thw"]
        assert grid_thw.ndim == 2
        grid_thw_list = grid_thw.tolist()

        if image_input["type"] == "image_embeds":
            image_embeds = image_input["image_embeds"]
        else:
            pixel_values = image_input["pixel_values"]
            image_embeds = self.visual(pixel_values, grid_thw=grid_thw_list)

        # Split concatenated embeddings for each image item.
        merge_size = self.visual.spatial_merge_size
        sizes = grid_thw.prod(-1) // merge_size // merge_size

        return image_embeds.split(sizes.tolist())

    def _process_video_input(
            self,
            video_input: Qwen2_5_VLVideoInputs) -> tuple[torch.Tensor, ...]:

        grid_thw = video_input["video_grid_thw"]
        assert grid_thw.ndim == 2
        grid_thw_list = grid_thw.tolist()

        if video_input["type"] == "video_embeds":
            video_embeds = video_input["video_embeds"]
        else:
            pixel_values_videos = video_input["pixel_values_videos"]
            video_embeds = self.visual(pixel_values_videos,
                                       grid_thw=grid_thw_list)

        # Split concatenated embeddings for each video item.
        merge_size = self.visual.spatial_merge_size
        sizes = grid_thw.prod(-1) // merge_size // merge_size

        return video_embeds.split(sizes.tolist())

    def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
        mm_input_by_modality = {}

        # Preserve the order of modalities if there are multiple of them
        # from the order of kwargs.
        for input_key in kwargs:
            if input_key in ("pixel_values", "image_embeds"
                             ) and "image" not in mm_input_by_modality:
                mm_input_by_modality[
                    "image"] = self._parse_and_validate_image_input(**kwargs)
            if input_key in ("pixel_values_videos", "video_embeds"
                             ) and "video" not in mm_input_by_modality:
                mm_input_by_modality[
                    "video"] = self._parse_and_validate_video_input(**kwargs)
        return mm_input_by_modality

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def get_multimodal_embeddings(self,
                                  **kwargs: object) -> MultiModalEmbeddings:

        mm_input_by_modality = self._parse_and_validate_multimodal_inputs(
            **kwargs)
        if not mm_input_by_modality:
            return []

        # The result multimodal_embeddings is tuple of tensors, with each
        # tensor correspoending to a multimodal data item (image or video).
        multimodal_embeddings: tuple[torch.Tensor, ...] = ()

        # NOTE: It is important to iterate over the keys in this dictionary
        # to preserve the order of the modalities.
        for modality in mm_input_by_modality:
            multimodal_input = mm_input_by_modality[modality]
            if modality == "image":
                vision_embeddings = self._process_image_input(multimodal_input)
                multimodal_embeddings += vision_embeddings
            if modality == "video":
                video_embeddings = self._process_video_input(multimodal_input)
                multimodal_embeddings += video_embeddings
        return multimodal_embeddings

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:
        inputs_embeds = self.language_model.get_input_embeddings(input_ids)
        if multimodal_embeddings is not None \
            and len(multimodal_embeddings) != 0:
            inputs_embeds = merge_multimodal_embeddings(
                input_ids, inputs_embeds, multimodal_embeddings,
                [self.config.image_token_id, self.config.video_token_id])
        return inputs_embeds

    def get_input_embeddings_v0(
        self,
        input_ids: torch.Tensor,
        image_input: Optional[Qwen2_5_VLImageInputs] = None,
        video_input: Optional[Qwen2_5_VLVideoInputs] = None,
    ) -> torch.Tensor:
        inputs_embeds = self.get_input_embeddings(input_ids)
        if image_input is not None:
            image_embeds = self._process_image_input(image_input)
            inputs_embeds = merge_multimodal_embeddings(
                input_ids,
                inputs_embeds,
                image_embeds,
                placeholder_token_id=self.config.image_token_id,
            )

        if video_input is not None:
            video_embeds = self._process_video_input(video_input)
            inputs_embeds = merge_multimodal_embeddings(
                input_ids,
                inputs_embeds,
                video_embeds,
                placeholder_token_id=self.config.video_token_id,
            )
        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: object,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        """Run forward pass for Qwen2.5-VL.

        Args:
            input_ids: Flattened (concatenated) input_ids corresponding to a
                batch.
            positions: Flattened (concatenated) position ids corresponding to a
                batch.
                **NOTE**: If mrope is enabled (default setting for Qwen2.5-VL
                opensource models), the shape will be `(3, seq_len)`,
                otherwise it will be `(seq_len,).
            pixel_values: Pixel values to be fed to a model.
                `None` if no images are passed.
            image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
                `None` if no images are passed.
            pixel_values_videos: Pixel values of videos to be fed to a model.
                `None` if no videos are passed.
            video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
                `None` if no videos are passed.
            second_per_grid_ts: Tensor `(num_videos)` of video time interval (
                in seconds) for each grid along the temporal dimension in the
                3D position IDs. `None` if no videos are passed.
        """

        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner from
        # `get_multimodal_embeddings` and `get_input_embeddings`, this
        # condition is only for v0 compatibility.
        elif inputs_embeds is None:
            image_input = self._parse_and_validate_image_input(**kwargs)
            video_input = self._parse_and_validate_video_input(**kwargs)

            if image_input is None and video_input is None:
                inputs_embeds = None
            else:
                if uses_mrope(self.config):
                    assert positions.ndim == 2 and positions.size(0) == 3, (
                        "multimodal section rotary embedding requires "
                        f"(3, seq_len) positions, but got {positions.size()}")
                inputs_embeds = self.get_input_embeddings_v0(
                    input_ids,
                    image_input=image_input,
                    video_input=video_input)
                input_ids = None

        hidden_states = self.language_model.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states,
                                                  sampling_metadata)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:

        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

    def get_mm_mapping(self) -> MultiModelKeys:
        """
        Get the module prefix in multimodal models
        """
        return MultiModelKeys.from_string_field(
            language_model="language_model",
            connector="visual.merger.",
            tower_model="visual.",
        )

config instance-attribute

config = config

hf_to_vllm_mapper class-attribute instance-attribute

hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={
        "model.language_model.": "language_model.model.",
        "model.visual.": "visual.",
        "lm_head.": "language_model.lm_head.",
        "model.": "language_model.model.",
    }
)

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "language_model"),
    architectures=["Qwen2ForCausalLM"],
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

multimodal_config instance-attribute

multimodal_config = multimodal_config

visual instance-attribute

visual = Qwen2_5_VisionTransformer(
    vision_config,
    norm_eps=getattr(config, "rms_norm_eps", 1e-06),
    quant_config=_maybe_ignore_quant_config(quant_config),
    prefix=maybe_prefix(prefix, "visual"),
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen2_5_vl.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
    multimodal_config = vllm_config.model_config.multimodal_config

    self.config = config
    self.multimodal_config = multimodal_config

    self.visual = Qwen2_5_VisionTransformer(
        config.vision_config,
        norm_eps=getattr(config, "rms_norm_eps", 1e-6),
        quant_config=self._maybe_ignore_quant_config(self.quant_config),
        prefix=maybe_prefix(prefix, "visual"),
    )

    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        prefix=maybe_prefix(prefix, "language_model"),
        architectures=["Qwen2ForCausalLM"],
    )

    self.make_empty_intermediate_tensors = (
        self.language_model.make_empty_intermediate_tensors)

_maybe_ignore_quant_config

_maybe_ignore_quant_config(
    config: Optional[QuantizationConfig],
)
Source code in vllm/model_executor/models/qwen2_5_vl.py
def _maybe_ignore_quant_config(self, config: Optional[QuantizationConfig]):
    # GPTQ configs do not have a list of ignored modules, however AutoGPTQ
    # seems to avoid vision encoder sections for some models.
    if isinstance(config, (GPTQConfig, GPTQMarlinConfig)):
        return None
    return config

_parse_and_validate_image_input

_parse_and_validate_image_input(
    **kwargs: object,
) -> Optional[Qwen2_5_VLImageInputs]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def _parse_and_validate_image_input(
        self, **kwargs: object) -> Optional[Qwen2_5_VLImageInputs]:
    pixel_values = kwargs.pop("pixel_values", None)
    image_embeds = kwargs.pop("image_embeds", None)
    image_grid_thw = kwargs.pop("image_grid_thw", None)

    if pixel_values is None and image_embeds is None:
        return None

    if pixel_values is not None:
        pixel_values = self._validate_and_reshape_mm_tensor(
            pixel_values, "image pixel values")
        image_grid_thw = self._validate_and_reshape_mm_tensor(
            image_grid_thw, "image grid_thw")

        if not isinstance(pixel_values, (torch.Tensor, list)):
            raise ValueError("Incorrect type of image pixel values. "
                             f"Got type: {type(pixel_values)}")

        return Qwen2_5_VLImagePixelInputs(type="pixel_values",
                                          pixel_values=pixel_values,
                                          image_grid_thw=image_grid_thw)

    if image_embeds is not None:
        image_embeds = self._validate_and_reshape_mm_tensor(
            image_embeds, "image embeds")
        image_grid_thw = self._validate_and_reshape_mm_tensor(
            image_grid_thw, "image grid_thw")

        if not isinstance(image_embeds, torch.Tensor):
            raise ValueError("Incorrect type of image embeddings. "
                             f"Got type: {type(image_embeds)}")
        return Qwen2_5_VLImageEmbeddingInputs(
            type="image_embeds",
            image_embeds=image_embeds,
            image_grid_thw=image_grid_thw)

_parse_and_validate_multimodal_inputs

_parse_and_validate_multimodal_inputs(
    **kwargs: object,
) -> dict
Source code in vllm/model_executor/models/qwen2_5_vl.py
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
    mm_input_by_modality = {}

    # Preserve the order of modalities if there are multiple of them
    # from the order of kwargs.
    for input_key in kwargs:
        if input_key in ("pixel_values", "image_embeds"
                         ) and "image" not in mm_input_by_modality:
            mm_input_by_modality[
                "image"] = self._parse_and_validate_image_input(**kwargs)
        if input_key in ("pixel_values_videos", "video_embeds"
                         ) and "video" not in mm_input_by_modality:
            mm_input_by_modality[
                "video"] = self._parse_and_validate_video_input(**kwargs)
    return mm_input_by_modality

_parse_and_validate_video_input

_parse_and_validate_video_input(
    **kwargs: object,
) -> Optional[Qwen2_5_VLVideoInputs]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def _parse_and_validate_video_input(
        self, **kwargs: object) -> Optional[Qwen2_5_VLVideoInputs]:
    pixel_values_videos = kwargs.pop("pixel_values_videos", None)
    video_embeds = kwargs.pop("video_embeds", None)
    video_grid_thw = kwargs.pop("video_grid_thw", None)
    second_per_grid_ts = kwargs.pop("second_per_grid_ts", None)

    if pixel_values_videos is None and video_embeds is None:
        return None

    if pixel_values_videos is not None:
        pixel_values_videos = self._validate_and_reshape_mm_tensor(
            pixel_values_videos, "video pixel values")
        video_grid_thw = self._validate_and_reshape_mm_tensor(
            video_grid_thw, "video grid_thw")

        return Qwen2_5_VLVideoPixelInputs(
            type="pixel_values_videos",
            pixel_values_videos=pixel_values_videos,
            video_grid_thw=video_grid_thw,
            second_per_grid_ts=second_per_grid_ts,
        )

    if video_embeds is not None:
        video_embeds = self._validate_and_reshape_mm_tensor(
            video_embeds, "video embeds")
        video_grid_thw = self._validate_and_reshape_mm_tensor(
            video_grid_thw, "video grid_thw")

        if not isinstance(video_embeds, torch.Tensor):
            raise ValueError("Incorrect type of video embeddings. "
                             f"Got type: {type(video_embeds)}")
        return Qwen2_5_VLVideoEmbeddingInputs(
            type="video_embeds",
            video_embeds=video_embeds,
            video_grid_thw=video_grid_thw)

_process_image_input

_process_image_input(
    image_input: Qwen2_5_VLImageInputs,
) -> tuple[Tensor, ...]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def _process_image_input(
        self,
        image_input: Qwen2_5_VLImageInputs) -> tuple[torch.Tensor, ...]:

    grid_thw = image_input["image_grid_thw"]
    assert grid_thw.ndim == 2
    grid_thw_list = grid_thw.tolist()

    if image_input["type"] == "image_embeds":
        image_embeds = image_input["image_embeds"]
    else:
        pixel_values = image_input["pixel_values"]
        image_embeds = self.visual(pixel_values, grid_thw=grid_thw_list)

    # Split concatenated embeddings for each image item.
    merge_size = self.visual.spatial_merge_size
    sizes = grid_thw.prod(-1) // merge_size // merge_size

    return image_embeds.split(sizes.tolist())

_process_video_input

_process_video_input(
    video_input: Qwen2_5_VLVideoInputs,
) -> tuple[Tensor, ...]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def _process_video_input(
        self,
        video_input: Qwen2_5_VLVideoInputs) -> tuple[torch.Tensor, ...]:

    grid_thw = video_input["video_grid_thw"]
    assert grid_thw.ndim == 2
    grid_thw_list = grid_thw.tolist()

    if video_input["type"] == "video_embeds":
        video_embeds = video_input["video_embeds"]
    else:
        pixel_values_videos = video_input["pixel_values_videos"]
        video_embeds = self.visual(pixel_values_videos,
                                   grid_thw=grid_thw_list)

    # Split concatenated embeddings for each video item.
    merge_size = self.visual.spatial_merge_size
    sizes = grid_thw.prod(-1) // merge_size // merge_size

    return video_embeds.split(sizes.tolist())

_validate_and_reshape_mm_tensor

_validate_and_reshape_mm_tensor(
    mm_input: object, name: str
) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def _validate_and_reshape_mm_tensor(self, mm_input: object,
                                    name: str) -> torch.Tensor:
    if not isinstance(mm_input, (torch.Tensor, list)):
        raise ValueError(f"Incorrect type of {name}. "
                         f"Got type: {type(mm_input)}")
    if isinstance(mm_input, torch.Tensor):
        if mm_input.ndim == 2:
            return mm_input
        if mm_input.ndim != 3:
            raise ValueError(f"{name} should be 2D or batched 3D tensor. "
                             f"Got ndim: {mm_input.ndim} "
                             f"(shape={mm_input.shape})")
        return torch.concat(list(mm_input))
    else:
        return torch.concat(mm_input)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    return self.language_model.compute_logits(hidden_states,
                                              sampling_metadata)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Union[Tensor, IntermediateTensors]

Run forward pass for Qwen2.5-VL.

Parameters:

Name Type Description Default
input_ids Tensor

Flattened (concatenated) input_ids corresponding to a batch.

required
positions Tensor

Flattened (concatenated) position ids corresponding to a batch. NOTE: If mrope is enabled (default setting for Qwen2.5-VL opensource models), the shape will be (3, seq_len), otherwise it will be `(seq_len,).

required
pixel_values

Pixel values to be fed to a model. None if no images are passed.

required
image_grid_thw

Tensor (n_images, 3) of image 3D grid in LLM. None if no images are passed.

required
pixel_values_videos

Pixel values of videos to be fed to a model. None if no videos are passed.

required
video_grid_thw

Tensor (n_videos, 3) of video 3D grid in LLM. None if no videos are passed.

required
second_per_grid_ts

Tensor (num_videos) of video time interval ( in seconds) for each grid along the temporal dimension in the 3D position IDs. None if no videos are passed.

required
Source code in vllm/model_executor/models/qwen2_5_vl.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
    """Run forward pass for Qwen2.5-VL.

    Args:
        input_ids: Flattened (concatenated) input_ids corresponding to a
            batch.
        positions: Flattened (concatenated) position ids corresponding to a
            batch.
            **NOTE**: If mrope is enabled (default setting for Qwen2.5-VL
            opensource models), the shape will be `(3, seq_len)`,
            otherwise it will be `(seq_len,).
        pixel_values: Pixel values to be fed to a model.
            `None` if no images are passed.
        image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
            `None` if no images are passed.
        pixel_values_videos: Pixel values of videos to be fed to a model.
            `None` if no videos are passed.
        video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
            `None` if no videos are passed.
        second_per_grid_ts: Tensor `(num_videos)` of video time interval (
            in seconds) for each grid along the temporal dimension in the
            3D position IDs. `None` if no videos are passed.
    """

    if intermediate_tensors is not None:
        inputs_embeds = None

    # NOTE: In v1, inputs_embeds is always generated at model runner from
    # `get_multimodal_embeddings` and `get_input_embeddings`, this
    # condition is only for v0 compatibility.
    elif inputs_embeds is None:
        image_input = self._parse_and_validate_image_input(**kwargs)
        video_input = self._parse_and_validate_video_input(**kwargs)

        if image_input is None and video_input is None:
            inputs_embeds = None
        else:
            if uses_mrope(self.config):
                assert positions.ndim == 2 and positions.size(0) == 3, (
                    "multimodal section rotary embedding requires "
                    f"(3, seq_len) positions, but got {positions.size()}")
            inputs_embeds = self.get_input_embeddings_v0(
                input_ids,
                image_input=image_input,
                video_input=video_input)
            input_ids = None

    hidden_states = self.language_model.model(
        input_ids=input_ids,
        positions=positions,
        intermediate_tensors=intermediate_tensors,
        inputs_embeds=inputs_embeds,
    )
    return hidden_states

get_input_embeddings

get_input_embeddings(
    input_ids: Tensor,
    multimodal_embeddings: Optional[
        MultiModalEmbeddings
    ] = None,
) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def get_input_embeddings(
    self,
    input_ids: torch.Tensor,
    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
    inputs_embeds = self.language_model.get_input_embeddings(input_ids)
    if multimodal_embeddings is not None \
        and len(multimodal_embeddings) != 0:
        inputs_embeds = merge_multimodal_embeddings(
            input_ids, inputs_embeds, multimodal_embeddings,
            [self.config.image_token_id, self.config.video_token_id])
    return inputs_embeds

get_input_embeddings_v0

get_input_embeddings_v0(
    input_ids: Tensor,
    image_input: Optional[Qwen2_5_VLImageInputs] = None,
    video_input: Optional[Qwen2_5_VLVideoInputs] = None,
) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def get_input_embeddings_v0(
    self,
    input_ids: torch.Tensor,
    image_input: Optional[Qwen2_5_VLImageInputs] = None,
    video_input: Optional[Qwen2_5_VLVideoInputs] = None,
) -> torch.Tensor:
    inputs_embeds = self.get_input_embeddings(input_ids)
    if image_input is not None:
        image_embeds = self._process_image_input(image_input)
        inputs_embeds = merge_multimodal_embeddings(
            input_ids,
            inputs_embeds,
            image_embeds,
            placeholder_token_id=self.config.image_token_id,
        )

    if video_input is not None:
        video_embeds = self._process_video_input(video_input)
        inputs_embeds = merge_multimodal_embeddings(
            input_ids,
            inputs_embeds,
            video_embeds,
            placeholder_token_id=self.config.video_token_id,
        )
    return inputs_embeds

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/qwen2_5_vl.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_mm_mapping

get_mm_mapping() -> MultiModelKeys

Get the module prefix in multimodal models

Source code in vllm/model_executor/models/qwen2_5_vl.py
def get_mm_mapping(self) -> MultiModelKeys:
    """
    Get the module prefix in multimodal models
    """
    return MultiModelKeys.from_string_field(
        language_model="language_model",
        connector="visual.merger.",
        tower_model="visual.",
    )

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/qwen2_5_vl.py
def get_multimodal_embeddings(self,
                              **kwargs: object) -> MultiModalEmbeddings:

    mm_input_by_modality = self._parse_and_validate_multimodal_inputs(
        **kwargs)
    if not mm_input_by_modality:
        return []

    # The result multimodal_embeddings is tuple of tensors, with each
    # tensor correspoending to a multimodal data item (image or video).
    multimodal_embeddings: tuple[torch.Tensor, ...] = ()

    # NOTE: It is important to iterate over the keys in this dictionary
    # to preserve the order of the modalities.
    for modality in mm_input_by_modality:
        multimodal_input = mm_input_by_modality[modality]
        if modality == "image":
            vision_embeddings = self._process_image_input(multimodal_input)
            multimodal_embeddings += vision_embeddings
        if modality == "video":
            video_embeddings = self._process_video_input(multimodal_input)
            multimodal_embeddings += video_embeddings
    return multimodal_embeddings

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> Optional[str]
Source code in vllm/model_executor/models/qwen2_5_vl.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
    if modality.startswith("image"):
        return "<|vision_start|><|image_pad|><|vision_end|>"
    if modality.startswith("video"):
        return "<|vision_start|><|video_pad|><|vision_end|>"

    raise ValueError("Only image or video modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:

    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

Qwen2_5_VLImageEmbeddingInputs

Bases: TypedDict

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VLImageEmbeddingInputs(TypedDict):
    type: Literal["image_embeds"]
    image_embeds: torch.Tensor
    """Supported types:
    - list[`torch.Tensor`]: A list of tensors holding all images' features.
        Each tensor holds an image's features.
    - `torch.Tensor`: A tensor holding all images' features
        (concatenation of all images' feature tensors).

    Tensor shape: `(num_image_features, hidden_size)`
    - `num_image_features` varies based on
        the number and resolution of the images.
    - `hidden_size` must match the hidden size of language model backbone.
    """

    image_grid_thw: torch.Tensor
    """Shape: `(num_images, 3)`
    This should be in `(grid_t, grid_h, grid_w)` format.
    """

image_embeds instance-attribute

image_embeds: Tensor

Supported types: - list[torch.Tensor]: A list of tensors holding all images' features. Each tensor holds an image's features. - torch.Tensor: A tensor holding all images' features (concatenation of all images' feature tensors).

Tensor shape: (num_image_features, hidden_size) - num_image_features varies based on the number and resolution of the images. - hidden_size must match the hidden size of language model backbone.

image_grid_thw instance-attribute

image_grid_thw: Tensor

Shape: (num_images, 3) This should be in (grid_t, grid_h, grid_w) format.

type instance-attribute

type: Literal['image_embeds']

Qwen2_5_VLImagePixelInputs

Bases: TypedDict

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VLImagePixelInputs(TypedDict):
    type: Literal["pixel_values"]
    pixel_values: torch.Tensor
    """Shape:
    `(num_patches, num_channels * patch_size * patch_size)`
    """

    image_grid_thw: torch.Tensor
    """Shape: `(num_images, 3)`
    This should be in `(grid_t, grid_h, grid_w)` format.
    """

image_grid_thw instance-attribute

image_grid_thw: Tensor

Shape: (num_images, 3) This should be in (grid_t, grid_h, grid_w) format.

pixel_values instance-attribute

pixel_values: Tensor

Shape: (num_patches, num_channels * patch_size * patch_size)

type instance-attribute

type: Literal['pixel_values']

Qwen2_5_VLMultiModalProcessor

Bases: Qwen2VLMultiModalProcessor

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VLMultiModalProcessor(Qwen2VLMultiModalProcessor):

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            **super()._get_mm_fields_config(hf_inputs, hf_processor_mm_kwargs),
            second_per_grid_ts=MultiModalFieldConfig.batched("video"),
        )

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        **super()._get_mm_fields_config(hf_inputs, hf_processor_mm_kwargs),
        second_per_grid_ts=MultiModalFieldConfig.batched("video"),
    )

Qwen2_5_VLProcessingInfo

Bases: Qwen2VLProcessingInfo

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VLProcessingInfo(Qwen2VLProcessingInfo):

    def get_hf_config(self):
        return self.ctx.get_hf_config(Qwen2_5_VLConfig)

    def get_hf_processor(
        self,
        *,
        min_pixels: Optional[int] = None,
        max_pixels: Optional[int] = None,
        size: Optional[dict[str, int]] = None,
        fps: Optional[Union[float, list[float]]] = None,
        **kwargs: object,
    ) -> Qwen2_5_VLProcessor:
        if fps is not None:
            kwargs["fps"] = fps

        return self.ctx.get_hf_processor(
            Qwen2_5_VLProcessor,
            image_processor=self.get_image_processor(min_pixels=min_pixels,
                                                     max_pixels=max_pixels,
                                                     size=size,
                                                     use_fast=kwargs.get(
                                                         "use_fast", True)),
            **kwargs,
        )

get_hf_config

get_hf_config()
Source code in vllm/model_executor/models/qwen2_5_vl.py
def get_hf_config(self):
    return self.ctx.get_hf_config(Qwen2_5_VLConfig)

get_hf_processor

get_hf_processor(
    *,
    min_pixels: Optional[int] = None,
    max_pixels: Optional[int] = None,
    size: Optional[dict[str, int]] = None,
    fps: Optional[Union[float, list[float]]] = None,
    **kwargs: object,
) -> Qwen2_5_VLProcessor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def get_hf_processor(
    self,
    *,
    min_pixels: Optional[int] = None,
    max_pixels: Optional[int] = None,
    size: Optional[dict[str, int]] = None,
    fps: Optional[Union[float, list[float]]] = None,
    **kwargs: object,
) -> Qwen2_5_VLProcessor:
    if fps is not None:
        kwargs["fps"] = fps

    return self.ctx.get_hf_processor(
        Qwen2_5_VLProcessor,
        image_processor=self.get_image_processor(min_pixels=min_pixels,
                                                 max_pixels=max_pixels,
                                                 size=size,
                                                 use_fast=kwargs.get(
                                                     "use_fast", True)),
        **kwargs,
    )

Qwen2_5_VLVideoEmbeddingInputs

Bases: TypedDict

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VLVideoEmbeddingInputs(TypedDict):
    type: Literal["video_embeds"]
    video_embeds: torch.Tensor
    """Supported types:
    - list[`torch.Tensor`]: A list of tensors holding all videos' features.
        Each tensor holds an video's features.
    - `torch.Tensor`: A tensor holding all videos' features
      (concatenation of all videos' feature tensors).

    Tensor shape: `(num_image_features, hidden_size)`
    - `num_image_features` varies based on
        the number and resolution of the videos.
    - `hidden_size` must match the hidden size of language model backbone.
    """

    video_grid_thw: torch.Tensor
    """Shape: `(num_videos, 3)`
    This should be in `(grid_t, grid_h, grid_w)` format.
    """

type instance-attribute

type: Literal['video_embeds']

video_embeds instance-attribute

video_embeds: Tensor

Supported types: - list[torch.Tensor]: A list of tensors holding all videos' features. Each tensor holds an video's features. - torch.Tensor: A tensor holding all videos' features (concatenation of all videos' feature tensors).

Tensor shape: (num_image_features, hidden_size) - num_image_features varies based on the number and resolution of the videos. - hidden_size must match the hidden size of language model backbone.

video_grid_thw instance-attribute

video_grid_thw: Tensor

Shape: (num_videos, 3) This should be in (grid_t, grid_h, grid_w) format.

Qwen2_5_VLVideoPixelInputs

Bases: TypedDict

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VLVideoPixelInputs(TypedDict):
    type: Literal["pixel_values_videos"]
    pixel_values_videos: torch.Tensor
    """Shape:
    `(num_patches,
      num_channels * temporal_patch_size * patch_size * patch_size)`
    """

    video_grid_thw: torch.Tensor
    """Shape: `(num_videos, 3)`

    This should be in `(grid_t, grid_h, grid_w)` format.
    """

    second_per_grid_ts: torch.Tensor
    """
    The video time interval (in seconds) for each grid along the temporal 
    dimension in the 3D position IDs. Returned when `videos` is not `None`.
    """

pixel_values_videos instance-attribute

pixel_values_videos: Tensor

Shape: (num_patches, num_channels * temporal_patch_size * patch_size * patch_size)

second_per_grid_ts instance-attribute

second_per_grid_ts: Tensor

The video time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs. Returned when videos is not None.

type instance-attribute

type: Literal['pixel_values_videos']

video_grid_thw instance-attribute

video_grid_thw: Tensor

Shape: (num_videos, 3)

This should be in (grid_t, grid_h, grid_w) format.

Qwen2_5_VisionAttention

Bases: Module

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VisionAttention(nn.Module):

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        projection_size: int,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        # Per attention head and per partition values.
        self.tp_size = parallel_state.get_tensor_model_parallel_world_size()
        self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
        self.hidden_size_per_attention_head = dist_utils.divide(
            projection_size, num_heads)
        self.num_attention_heads_per_partition = dist_utils.divide(
            num_heads, self.tp_size)

        self.qkv = QKVParallelLinear(
            hidden_size=embed_dim,
            head_size=self.hidden_size_per_attention_head,
            total_num_heads=num_heads,
            total_num_kv_heads=num_heads,
            bias=True,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv")
        self.proj = RowParallelLinear(input_size=projection_size,
                                      output_size=embed_dim,
                                      quant_config=quant_config,
                                      prefix=f"{prefix}.proj")

        # Detect attention implementation.
        self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
        if self.attn_backend not in {
                _Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS
        }:
            raise RuntimeError(
                f"Qwen2.5-VL does not support {self.attn_backend} backend now."
            )

    def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
        # [s, b, 3 * head * head_dim]
        seq_len, bs, _ = qkv.shape
        if self.tp_size > 1:
            qkv = all_gather_interleave(qkv, self.qkv.hidden_size,
                                        self.tp_size)

        # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
        q, k, v = qkv.chunk(3, dim=2)

        # 3 * [s, b, head * head_dim]
        if self.tp_size > 1:
            splitter = partial(dist_utils.split_tensor_along_last_dim,
                               num_partitions=self.tp_size)
            q = splitter(q)[self.tp_rank]
            k = splitter(k)[self.tp_rank]
            v = splitter(v)[self.tp_rank]

        # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
        new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
                     self.hidden_size_per_attention_head)
        q, k, v = (x.view(*new_shape) for x in (q, k, v))
        return q, k, v

    def forward(
            self,
            x: torch.Tensor,
            cu_seqlens: torch.Tensor,
            rotary_pos_emb: torch.Tensor,
            max_seqlen: Optional[int] = None,  # Only used for Flash Attention
            seqlens: Optional[list[int]] = None,  # Only used for xFormers
    ) -> torch.Tensor:
        # [s, b, c] --> [s, b, head * 3 * head_dim]
        x, _ = self.qkv(x)

        # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
        q, k, v = self.split_qkv(x)
        batch_size = q.shape[1]

        q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
                   for x in (q, k, v))
        if rotary_pos_emb is not None:
            q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
            k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)

        if self.attn_backend == _Backend.FLASH_ATTN:
            # from vllm_flash_attn.flash_attn_interface import (
            #   flash_attn_varlen_func)
            from flash_attn import flash_attn_varlen_func

            q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])

            output = flash_attn_varlen_func(q,
                                            k,
                                            v,
                                            cu_seqlens_q=cu_seqlens,
                                            cu_seqlens_k=cu_seqlens,
                                            max_seqlen_q=max_seqlen,
                                            max_seqlen_k=max_seqlen,
                                            dropout_p=0,
                                            causal=False)

            context_layer = rearrange(output,
                                      "(b s) ... -> b s ...",
                                      b=batch_size)
        elif self.attn_backend == _Backend.TORCH_SDPA:
            # Execute attention entry by entry for speed & less VRAM.
            outputs = []
            for i in range(1, len(cu_seqlens)):
                start_idx = cu_seqlens[i - 1]
                end_idx = cu_seqlens[i]
                q_i = q[:, start_idx:end_idx]
                k_i = k[:, start_idx:end_idx]
                v_i = v[:, start_idx:end_idx]
                q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
                                 for x in [q_i, k_i, v_i])
                output_i = F.scaled_dot_product_attention(q_i,
                                                          k_i,
                                                          v_i,
                                                          dropout_p=0.0)
                output_i = rearrange(output_i, "b h s d -> b s h d ")
                outputs.append(output_i)
            context_layer = torch.cat(outputs, dim=1)
        elif self.attn_backend == _Backend.XFORMERS:
            from xformers import ops as xops
            from xformers.ops.fmha.attn_bias import BlockDiagonalMask

            attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
                                                       kv_seqlen=None,
                                                       device=q.device)

            context_layer = xops.memory_efficient_attention_forward(
                q, k, v, attn_bias=attn_bias, p=0, scale=None)
        context_layer = rearrange(context_layer,
                                  "b s h d -> s b (h d)").contiguous()

        output, _ = self.proj(context_layer)
        return output

attn_backend instance-attribute

attn_backend: _Backend = get_vit_attn_backend(
    support_fa=True
)

hidden_size_per_attention_head instance-attribute

hidden_size_per_attention_head = divide(
    projection_size, num_heads
)

num_attention_heads_per_partition instance-attribute

num_attention_heads_per_partition = divide(
    num_heads, tp_size
)

proj instance-attribute

proj = RowParallelLinear(
    input_size=projection_size,
    output_size=embed_dim,
    quant_config=quant_config,
    prefix=f"{prefix}.proj",
)

qkv instance-attribute

qkv = QKVParallelLinear(
    hidden_size=embed_dim,
    head_size=hidden_size_per_attention_head,
    total_num_heads=num_heads,
    total_num_kv_heads=num_heads,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv",
)

tp_rank instance-attribute

tp_size instance-attribute

__init__

__init__(
    embed_dim: int,
    num_heads: int,
    projection_size: int,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl.py
def __init__(
    self,
    embed_dim: int,
    num_heads: int,
    projection_size: int,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    # Per attention head and per partition values.
    self.tp_size = parallel_state.get_tensor_model_parallel_world_size()
    self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
    self.hidden_size_per_attention_head = dist_utils.divide(
        projection_size, num_heads)
    self.num_attention_heads_per_partition = dist_utils.divide(
        num_heads, self.tp_size)

    self.qkv = QKVParallelLinear(
        hidden_size=embed_dim,
        head_size=self.hidden_size_per_attention_head,
        total_num_heads=num_heads,
        total_num_kv_heads=num_heads,
        bias=True,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv")
    self.proj = RowParallelLinear(input_size=projection_size,
                                  output_size=embed_dim,
                                  quant_config=quant_config,
                                  prefix=f"{prefix}.proj")

    # Detect attention implementation.
    self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
    if self.attn_backend not in {
            _Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS
    }:
        raise RuntimeError(
            f"Qwen2.5-VL does not support {self.attn_backend} backend now."
        )

forward

forward(
    x: Tensor,
    cu_seqlens: Tensor,
    rotary_pos_emb: Tensor,
    max_seqlen: Optional[int] = None,
    seqlens: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def forward(
        self,
        x: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor,
        max_seqlen: Optional[int] = None,  # Only used for Flash Attention
        seqlens: Optional[list[int]] = None,  # Only used for xFormers
) -> torch.Tensor:
    # [s, b, c] --> [s, b, head * 3 * head_dim]
    x, _ = self.qkv(x)

    # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
    q, k, v = self.split_qkv(x)
    batch_size = q.shape[1]

    q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
               for x in (q, k, v))
    if rotary_pos_emb is not None:
        q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
        k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)

    if self.attn_backend == _Backend.FLASH_ATTN:
        # from vllm_flash_attn.flash_attn_interface import (
        #   flash_attn_varlen_func)
        from flash_attn import flash_attn_varlen_func

        q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])

        output = flash_attn_varlen_func(q,
                                        k,
                                        v,
                                        cu_seqlens_q=cu_seqlens,
                                        cu_seqlens_k=cu_seqlens,
                                        max_seqlen_q=max_seqlen,
                                        max_seqlen_k=max_seqlen,
                                        dropout_p=0,
                                        causal=False)

        context_layer = rearrange(output,
                                  "(b s) ... -> b s ...",
                                  b=batch_size)
    elif self.attn_backend == _Backend.TORCH_SDPA:
        # Execute attention entry by entry for speed & less VRAM.
        outputs = []
        for i in range(1, len(cu_seqlens)):
            start_idx = cu_seqlens[i - 1]
            end_idx = cu_seqlens[i]
            q_i = q[:, start_idx:end_idx]
            k_i = k[:, start_idx:end_idx]
            v_i = v[:, start_idx:end_idx]
            q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
                             for x in [q_i, k_i, v_i])
            output_i = F.scaled_dot_product_attention(q_i,
                                                      k_i,
                                                      v_i,
                                                      dropout_p=0.0)
            output_i = rearrange(output_i, "b h s d -> b s h d ")
            outputs.append(output_i)
        context_layer = torch.cat(outputs, dim=1)
    elif self.attn_backend == _Backend.XFORMERS:
        from xformers import ops as xops
        from xformers.ops.fmha.attn_bias import BlockDiagonalMask

        attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
                                                   kv_seqlen=None,
                                                   device=q.device)

        context_layer = xops.memory_efficient_attention_forward(
            q, k, v, attn_bias=attn_bias, p=0, scale=None)
    context_layer = rearrange(context_layer,
                              "b s h d -> s b (h d)").contiguous()

    output, _ = self.proj(context_layer)
    return output

split_qkv

split_qkv(qkv: Tensor) -> tuple[Tensor, ...]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
    # [s, b, 3 * head * head_dim]
    seq_len, bs, _ = qkv.shape
    if self.tp_size > 1:
        qkv = all_gather_interleave(qkv, self.qkv.hidden_size,
                                    self.tp_size)

    # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
    q, k, v = qkv.chunk(3, dim=2)

    # 3 * [s, b, head * head_dim]
    if self.tp_size > 1:
        splitter = partial(dist_utils.split_tensor_along_last_dim,
                           num_partitions=self.tp_size)
        q = splitter(q)[self.tp_rank]
        k = splitter(k)[self.tp_rank]
        v = splitter(v)[self.tp_rank]

    # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
    new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
    q, k, v = (x.view(*new_shape) for x in (q, k, v))
    return q, k, v

Qwen2_5_VisionBlock

Bases: Module

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VisionBlock(nn.Module):

    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_hidden_dim: int,
        act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)
        self.norm1 = norm_layer(dim)
        self.norm2 = norm_layer(dim)
        self.attn = Qwen2_5_VisionAttention(embed_dim=dim,
                                            num_heads=num_heads,
                                            projection_size=dim,
                                            quant_config=quant_config,
                                            prefix=f"{prefix}.attn")
        self.mlp = Qwen2_5_VisionMLP(dim,
                                     mlp_hidden_dim,
                                     act_fn=act_fn,
                                     bias=True,
                                     quant_config=quant_config,
                                     prefix=f"{prefix}.mlp")

    def forward(
            self,
            x: torch.Tensor,
            cu_seqlens: torch.Tensor,
            rotary_pos_emb: torch.Tensor,
            max_seqlen: Optional[int] = None,  # Only used for Flash Attention
            seqlens: Optional[list[int]] = None,  # Only used for xFormers
    ) -> torch.Tensor:
        x = x + self.attn(self.norm1(x),
                          cu_seqlens=cu_seqlens,
                          rotary_pos_emb=rotary_pos_emb,
                          max_seqlen=max_seqlen,
                          seqlens=seqlens)

        x = x + self.mlp(self.norm2(x))
        return x

attn instance-attribute

attn = Qwen2_5_VisionAttention(
    embed_dim=dim,
    num_heads=num_heads,
    projection_size=dim,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

mlp instance-attribute

mlp = Qwen2_5_VisionMLP(
    dim,
    mlp_hidden_dim,
    act_fn=act_fn,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

norm1 instance-attribute

norm1 = norm_layer(dim)

norm2 instance-attribute

norm2 = norm_layer(dim)

__init__

__init__(
    dim: int,
    num_heads: int,
    mlp_hidden_dim: int,
    act_fn: Callable[[Tensor], Tensor] = silu,
    norm_layer: Optional[Callable[[int], Module]] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl.py
def __init__(
    self,
    dim: int,
    num_heads: int,
    mlp_hidden_dim: int,
    act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
    norm_layer: Optional[Callable[[int], nn.Module]] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    if norm_layer is None:
        norm_layer = partial(nn.LayerNorm, eps=1e-6)
    self.norm1 = norm_layer(dim)
    self.norm2 = norm_layer(dim)
    self.attn = Qwen2_5_VisionAttention(embed_dim=dim,
                                        num_heads=num_heads,
                                        projection_size=dim,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.attn")
    self.mlp = Qwen2_5_VisionMLP(dim,
                                 mlp_hidden_dim,
                                 act_fn=act_fn,
                                 bias=True,
                                 quant_config=quant_config,
                                 prefix=f"{prefix}.mlp")

forward

forward(
    x: Tensor,
    cu_seqlens: Tensor,
    rotary_pos_emb: Tensor,
    max_seqlen: Optional[int] = None,
    seqlens: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def forward(
        self,
        x: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor,
        max_seqlen: Optional[int] = None,  # Only used for Flash Attention
        seqlens: Optional[list[int]] = None,  # Only used for xFormers
) -> torch.Tensor:
    x = x + self.attn(self.norm1(x),
                      cu_seqlens=cu_seqlens,
                      rotary_pos_emb=rotary_pos_emb,
                      max_seqlen=max_seqlen,
                      seqlens=seqlens)

    x = x + self.mlp(self.norm2(x))
    return x

Qwen2_5_VisionMLP

Bases: Module

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VisionMLP(nn.Module):

    def __init__(self,
                 in_features: int,
                 hidden_features: int,
                 bias: bool = False,
                 act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__()
        self.gate_proj = ColumnParallelLinear(in_features,
                                              hidden_features,
                                              bias=bias,
                                              quant_config=quant_config,
                                              prefix=f"{prefix}.gate_proj")
        self.up_proj = ColumnParallelLinear(in_features,
                                            hidden_features,
                                            bias=bias,
                                            quant_config=quant_config,
                                            prefix=f"{prefix}.up_proj")
        self.down_proj = RowParallelLinear(hidden_features,
                                           in_features,
                                           bias=bias,
                                           quant_config=quant_config,
                                           prefix=f"{prefix}.down_proj")
        self.act_fn = act_fn

    def forward(self, x: torch.Tensor):
        x_gate, _ = self.gate_proj(x)
        x_gate = self.act_fn(x_gate)
        x_up, _ = self.up_proj(x)
        x_down, _ = self.down_proj(x_gate * x_up)
        return x_down

act_fn instance-attribute

act_fn = act_fn

down_proj instance-attribute

down_proj = RowParallelLinear(
    hidden_features,
    in_features,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.down_proj",
)

gate_proj instance-attribute

gate_proj = ColumnParallelLinear(
    in_features,
    hidden_features,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_proj",
)

up_proj instance-attribute

up_proj = ColumnParallelLinear(
    in_features,
    hidden_features,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.up_proj",
)

__init__

__init__(
    in_features: int,
    hidden_features: int,
    bias: bool = False,
    act_fn: Callable[[Tensor], Tensor] = silu,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/qwen2_5_vl.py
def __init__(self,
             in_features: int,
             hidden_features: int,
             bias: bool = False,
             act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = ""):
    super().__init__()
    self.gate_proj = ColumnParallelLinear(in_features,
                                          hidden_features,
                                          bias=bias,
                                          quant_config=quant_config,
                                          prefix=f"{prefix}.gate_proj")
    self.up_proj = ColumnParallelLinear(in_features,
                                        hidden_features,
                                        bias=bias,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.up_proj")
    self.down_proj = RowParallelLinear(hidden_features,
                                       in_features,
                                       bias=bias,
                                       quant_config=quant_config,
                                       prefix=f"{prefix}.down_proj")
    self.act_fn = act_fn

forward

forward(x: Tensor)
Source code in vllm/model_executor/models/qwen2_5_vl.py
def forward(self, x: torch.Tensor):
    x_gate, _ = self.gate_proj(x)
    x_gate = self.act_fn(x_gate)
    x_up, _ = self.up_proj(x)
    x_down, _ = self.down_proj(x_gate * x_up)
    return x_down

Qwen2_5_VisionPatchEmbed

Bases: Module

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VisionPatchEmbed(nn.Module):

    def __init__(
        self,
        patch_size: int = 14,
        temporal_patch_size: int = 2,
        in_channels: int = 3,
        hidden_size: int = 1152,
    ) -> None:
        super().__init__()
        self.patch_size = patch_size
        self.temporal_patch_size = temporal_patch_size
        self.hidden_size = hidden_size

        kernel_size = (temporal_patch_size, patch_size, patch_size)
        self.proj = nn.Conv3d(in_channels,
                              hidden_size,
                              kernel_size=kernel_size,
                              stride=kernel_size,
                              bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        L, C = x.shape
        x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
                   self.patch_size)
        x = self.proj(x).view(L, self.hidden_size)
        return x

hidden_size instance-attribute

hidden_size = hidden_size

patch_size instance-attribute

patch_size = patch_size

proj instance-attribute

proj = Conv3d(
    in_channels,
    hidden_size,
    kernel_size=kernel_size,
    stride=kernel_size,
    bias=False,
)

temporal_patch_size instance-attribute

temporal_patch_size = temporal_patch_size

__init__

__init__(
    patch_size: int = 14,
    temporal_patch_size: int = 2,
    in_channels: int = 3,
    hidden_size: int = 1152,
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl.py
def __init__(
    self,
    patch_size: int = 14,
    temporal_patch_size: int = 2,
    in_channels: int = 3,
    hidden_size: int = 1152,
) -> None:
    super().__init__()
    self.patch_size = patch_size
    self.temporal_patch_size = temporal_patch_size
    self.hidden_size = hidden_size

    kernel_size = (temporal_patch_size, patch_size, patch_size)
    self.proj = nn.Conv3d(in_channels,
                          hidden_size,
                          kernel_size=kernel_size,
                          stride=kernel_size,
                          bias=False)

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    L, C = x.shape
    x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
               self.patch_size)
    x = self.proj(x).view(L, self.hidden_size)
    return x

Qwen2_5_VisionPatchMerger

Bases: Module

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VisionPatchMerger(nn.Module):

    def __init__(
        self,
        d_model: int,
        context_dim: int,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        spatial_merge_size: int = 2,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = context_dim * (spatial_merge_size**2)
        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)
        self.ln_q = norm_layer(context_dim)
        self.mlp = nn.ModuleList([
            ColumnParallelLinear(self.hidden_size,
                                 self.hidden_size,
                                 bias=True,
                                 quant_config=quant_config,
                                 prefix=f"{prefix}.mlp.0"),
            nn.GELU(),
            RowParallelLinear(self.hidden_size,
                              d_model,
                              bias=True,
                              quant_config=quant_config,
                              prefix=f"{prefix}.mlp.2"),
        ])

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.ln_q(x)
        x = x.view(-1, self.hidden_size)

        mlp_fc1, mlp_act, mlp_fc2 = self.mlp
        x_parallel, _ = mlp_fc1(x)
        x_parallel = mlp_act(x_parallel)
        out, _ = mlp_fc2(x_parallel)
        return out

hidden_size instance-attribute

hidden_size = context_dim * spatial_merge_size ** 2

ln_q instance-attribute

ln_q = norm_layer(context_dim)

mlp instance-attribute

mlp = ModuleList(
    [
        ColumnParallelLinear(
            hidden_size,
            hidden_size,
            bias=True,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp.0",
        ),
        GELU(),
        RowParallelLinear(
            hidden_size,
            d_model,
            bias=True,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp.2",
        ),
    ]
)

__init__

__init__(
    d_model: int,
    context_dim: int,
    norm_layer: Optional[Callable[[int], Module]] = None,
    spatial_merge_size: int = 2,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl.py
def __init__(
    self,
    d_model: int,
    context_dim: int,
    norm_layer: Optional[Callable[[int], nn.Module]] = None,
    spatial_merge_size: int = 2,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.hidden_size = context_dim * (spatial_merge_size**2)
    if norm_layer is None:
        norm_layer = partial(nn.LayerNorm, eps=1e-6)
    self.ln_q = norm_layer(context_dim)
    self.mlp = nn.ModuleList([
        ColumnParallelLinear(self.hidden_size,
                             self.hidden_size,
                             bias=True,
                             quant_config=quant_config,
                             prefix=f"{prefix}.mlp.0"),
        nn.GELU(),
        RowParallelLinear(self.hidden_size,
                          d_model,
                          bias=True,
                          quant_config=quant_config,
                          prefix=f"{prefix}.mlp.2"),
    ])

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    x = self.ln_q(x)
    x = x.view(-1, self.hidden_size)

    mlp_fc1, mlp_act, mlp_fc2 = self.mlp
    x_parallel, _ = mlp_fc1(x)
    x_parallel = mlp_act(x_parallel)
    out, _ = mlp_fc2(x_parallel)
    return out

Qwen2_5_VisionRotaryEmbedding

Bases: Module

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VisionRotaryEmbedding(nn.Module):

    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        self.dim = dim
        self.theta = theta
        inv_freq = 1.0 / (theta**(
            torch.arange(0, dim, 2, dtype=torch.float, device='cpu') / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self._seq_len_cached = 0
        self._freqs_cached = None

    def update_freqs_cache(self, seqlen: int) -> None:
        if seqlen > self._seq_len_cached:
            seqlen *= 2
            self._seq_len_cached = seqlen
            self.inv_freq = 1.0 / (self.theta**(torch.arange(
                0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device)
                                                / self.dim))
            seq = torch.arange(seqlen,
                               device=self.inv_freq.device,
                               dtype=self.inv_freq.dtype)
            freqs = torch.outer(seq, self.inv_freq)
            self._freqs_cached = freqs

    def forward(self, seqlen: int) -> torch.Tensor:
        self.update_freqs_cache(seqlen)
        return self._freqs_cached[:seqlen]

_freqs_cached instance-attribute

_freqs_cached = None

_seq_len_cached instance-attribute

_seq_len_cached = 0

dim instance-attribute

dim = dim

theta instance-attribute

theta = theta

__init__

__init__(dim: int, theta: float = 10000.0) -> None
Source code in vllm/model_executor/models/qwen2_5_vl.py
def __init__(self, dim: int, theta: float = 10000.0) -> None:
    super().__init__()
    self.dim = dim
    self.theta = theta
    inv_freq = 1.0 / (theta**(
        torch.arange(0, dim, 2, dtype=torch.float, device='cpu') / dim))
    self.register_buffer("inv_freq", inv_freq, persistent=False)
    self._seq_len_cached = 0
    self._freqs_cached = None

forward

forward(seqlen: int) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def forward(self, seqlen: int) -> torch.Tensor:
    self.update_freqs_cache(seqlen)
    return self._freqs_cached[:seqlen]

update_freqs_cache

update_freqs_cache(seqlen: int) -> None
Source code in vllm/model_executor/models/qwen2_5_vl.py
def update_freqs_cache(self, seqlen: int) -> None:
    if seqlen > self._seq_len_cached:
        seqlen *= 2
        self._seq_len_cached = seqlen
        self.inv_freq = 1.0 / (self.theta**(torch.arange(
            0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device)
                                            / self.dim))
        seq = torch.arange(seqlen,
                           device=self.inv_freq.device,
                           dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        self._freqs_cached = freqs

Qwen2_5_VisionTransformer

Bases: Module

Source code in vllm/model_executor/models/qwen2_5_vl.py
class Qwen2_5_VisionTransformer(nn.Module):

    def __init__(
        self,
        vision_config: Qwen2_5_VLVisionConfig,
        norm_eps: float = 1e-6,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        patch_size = vision_config.patch_size
        temporal_patch_size = vision_config.temporal_patch_size
        in_channels = vision_config.in_channels
        depth = vision_config.depth
        self.hidden_size = vision_config.hidden_size
        self.num_heads = vision_config.num_heads

        # args for get_window_index_thw
        self.window_size = vision_config.window_size
        self.patch_size = vision_config.patch_size
        self.spatial_merge_size = vision_config.spatial_merge_size
        self.fullatt_block_indexes = vision_config.fullatt_block_indexes
        self.spatial_merge_unit = self.spatial_merge_size**2

        self.patch_embed = Qwen2_5_VisionPatchEmbed(
            patch_size=patch_size,
            temporal_patch_size=temporal_patch_size,
            in_channels=in_channels,
            hidden_size=self.hidden_size,
        )

        norm_layer = partial(RMSNorm, eps=norm_eps)
        head_dim = self.hidden_size // self.num_heads
        self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)

        self.blocks = nn.ModuleList([
            Qwen2_5_VisionBlock(
                dim=self.hidden_size,
                num_heads=self.num_heads,
                mlp_hidden_dim=vision_config.intermediate_size,
                act_fn=_ACTIVATION_REGISTRY[vision_config.hidden_act],
                norm_layer=norm_layer,
                quant_config=quant_config,
                prefix=f"{prefix}.blocks.{layer_idx}")
            for layer_idx in range(depth)
        ])
        self.merger = Qwen2_5_VisionPatchMerger(
            d_model=vision_config.out_hidden_size,
            context_dim=self.hidden_size,
            norm_layer=norm_layer,
            spatial_merge_size=self.spatial_merge_size,
            quant_config=quant_config,
            prefix=f"{prefix}.merger",
        )
        self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)

    @property
    def dtype(self) -> torch.dtype:
        return self.patch_embed.proj.weight.dtype

    @property
    def device(self) -> torch.device:
        return self.patch_embed.proj.weight.device

    def rotary_pos_emb_thw(self, t, h, w):
        hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
        wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
        hpos_ids = hpos_ids.reshape(
            h // self.spatial_merge_size,
            self.spatial_merge_size,
            w // self.spatial_merge_size,
            self.spatial_merge_size,
        ).permute(0, 2, 1, 3).flatten()
        wpos_ids = wpos_ids.reshape(
            h // self.spatial_merge_size,
            self.spatial_merge_size,
            w // self.spatial_merge_size,
            self.spatial_merge_size,
        ).permute(0, 2, 1, 3).flatten()
        pos_ids = torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
        max_size = max(h, w)
        rotary_pos_emb_full = self.rotary_pos_emb(max_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        rotary_pos_emb = rotary_pos_emb.reshape(
            rotary_pos_emb.shape[0] // self.spatial_merge_unit,
            self.spatial_merge_unit, -1)

        return rotary_pos_emb

    def get_window_index_thw(self, grid_t, grid_h, grid_w):
        vit_merger_window_size = (self.window_size //
                                  self.spatial_merge_size // self.patch_size)

        llm_grid_h = grid_h // self.spatial_merge_size
        llm_grid_w = grid_w // self.spatial_merge_size
        index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
            grid_t, llm_grid_h, llm_grid_w)
        pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
        pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
        num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
        num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
        index_padded = F.pad(index, (0, pad_w, 0, pad_h), 'constant', -100)
        index_padded = index_padded.reshape(grid_t, num_windows_h,
                                            vit_merger_window_size,
                                            num_windows_w,
                                            vit_merger_window_size)
        index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
            grid_t, num_windows_h * num_windows_w, vit_merger_window_size,
            vit_merger_window_size)
        seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
        index_padded = index_padded.reshape(-1)
        index_new = index_padded[index_padded != -100]
        cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit
        cu_seqlens_tmp = cu_seqlens_tmp.to(dtype=torch.int32)
        cu_seqlens_tmp = torch.unique_consecutive(cu_seqlens_tmp)

        return index_new, cu_seqlens_tmp

    @lru_cache(maxsize=1024)  # noqa: B019
    def get_rope_by_thw(self, t, h, w):
        window_index_thw, cu_seqlens_window_thw = self.get_window_index_thw(
            t, h, w)
        rotary_pos_emb_thw = self.rotary_pos_emb_thw(t, h, w)
        rotary_pos_emb_thw = rotary_pos_emb_thw[window_index_thw, :, :]
        rotary_pos_emb_thw = rotary_pos_emb_thw.flatten(start_dim=0, end_dim=1)
        cu_seqlens_thw = torch.repeat_interleave(
            torch.tensor([h * w], dtype=torch.int32), t)
        return (rotary_pos_emb_thw, window_index_thw, cu_seqlens_window_thw,
                cu_seqlens_thw)

    def compute_attn_mask_seqlen(
        self,
        cu_seqlens: torch.Tensor,
    ) -> tuple[Optional[int], Optional[list[int]]]:
        max_seqlen, seqlens = None, None
        if self.attn_backend == _Backend.FLASH_ATTN:
            max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
        elif self.attn_backend == _Backend.XFORMERS:
            seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
        return max_seqlen, seqlens

    def forward(
        self,
        x: torch.Tensor,
        grid_thw: list[list[int]],
    ) -> torch.Tensor:
        # patchify
        seq_len, _ = x.size()
        rotary_pos_emb = []
        window_index: list = []
        cu_window_seqlens: list = [torch.tensor([0], dtype=torch.int32)]
        cu_seqlens: list = []

        hidden_states = x.to(device=self.device, dtype=self.dtype)
        hidden_states = self.patch_embed(hidden_states)

        window_index_id = 0
        cu_window_seqlens_last = 0
        for t, h, w in grid_thw:
            t, h, w = int(t), int(h), int(w)
            llm_h = h // self.spatial_merge_size
            llm_w = w // self.spatial_merge_size

            (
                rotary_pos_emb_thw,
                window_index_thw,
                cu_seqlens_window_thw,
                cu_seqlens_thw,
            ) = self.get_rope_by_thw(t, h, w)

            window_index.append(window_index_thw + window_index_id)
            window_index_id += (t * llm_h * llm_w)

            cu_seqlens_window_thw = (cu_seqlens_window_thw +
                                     cu_window_seqlens_last)
            cu_window_seqlens_last = cu_seqlens_window_thw[-1]
            cu_window_seqlens.append(cu_seqlens_window_thw)

            rotary_pos_emb.append(rotary_pos_emb_thw)

            cu_seqlens.append(cu_seqlens_thw)

        rotary_pos_emb = torch.cat(rotary_pos_emb)
        window_index = torch.cat(window_index)
        cu_window_seqlens = torch.cat(cu_window_seqlens)
        cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
        cu_seqlens = torch.cat(cu_seqlens)
        cu_seqlens = torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32)
        cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)

        # transformers
        # pre-compute seqlens for window/full attn to reduce cuMemcpy operations
        max_seqlen_full, seqlens_full = self.compute_attn_mask_seqlen(
            cu_seqlens)
        max_seqlen_window, seqlens_window = self.compute_attn_mask_seqlen(
            cu_window_seqlens)

        cu_seqlens = cu_seqlens.to(device=self.device, non_blocking=True)
        cu_window_seqlens = cu_window_seqlens.to(device=self.device,
                                                 non_blocking=True)
        rotary_pos_emb = rotary_pos_emb.to(device=self.device,
                                           non_blocking=True)
        window_index = window_index.to(device=hidden_states.device,
                                       non_blocking=True)

        hidden_states = hidden_states.reshape(
            seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
        hidden_states = hidden_states[window_index, :, :]
        hidden_states = hidden_states.reshape(seq_len, -1)

        hidden_states = hidden_states.unsqueeze(1)

        for layer_num, blk in enumerate(self.blocks):
            if layer_num in self.fullatt_block_indexes:
                cu_seqlens_now = cu_seqlens
                max_seqlen_now = max_seqlen_full
                seqlens_now = seqlens_full
            else:
                cu_seqlens_now = cu_window_seqlens
                max_seqlen_now = max_seqlen_window
                seqlens_now = seqlens_window

            hidden_states = blk(
                hidden_states,
                cu_seqlens=cu_seqlens_now,
                rotary_pos_emb=rotary_pos_emb,
                max_seqlen=max_seqlen_now,
                seqlens=seqlens_now,
            )

        # For Qwen2.5-VL-3B, float16 will overflow at last block
        # for long visual tokens sequences.
        if hidden_states.dtype == torch.float16:
            hidden_states = cast_overflow_tensors(hidden_states)

        # adapter
        hidden_states = self.merger(hidden_states)
        reverse_indices = torch.argsort(window_index)
        hidden_states = hidden_states[reverse_indices, :]
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("attn.qkv.", "attn.q.", "q"),
            ("attn.qkv.", "attn.k.", "k"),
            ("attn.qkv.", "attn.v.", "v"),
        ]
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        loaded_params: set[str] = set()

        for name, loaded_weight in weights:
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

attn_backend instance-attribute

attn_backend: _Backend = get_vit_attn_backend(
    support_fa=True
)

blocks instance-attribute

blocks = ModuleList(
    [
        Qwen2_5_VisionBlock(
            dim=hidden_size,
            num_heads=num_heads,
            mlp_hidden_dim=intermediate_size,
            act_fn=_ACTIVATION_REGISTRY[hidden_act],
            norm_layer=norm_layer,
            quant_config=quant_config,
            prefix=f"{prefix}.blocks.{layer_idx}",
        )
        for layer_idx in range(depth)
    ]
)

device property

device: device

dtype property

dtype: dtype

fullatt_block_indexes instance-attribute

fullatt_block_indexes = fullatt_block_indexes

hidden_size instance-attribute

hidden_size = hidden_size

merger instance-attribute

merger = Qwen2_5_VisionPatchMerger(
    d_model=out_hidden_size,
    context_dim=hidden_size,
    norm_layer=norm_layer,
    spatial_merge_size=spatial_merge_size,
    quant_config=quant_config,
    prefix=f"{prefix}.merger",
)

num_heads instance-attribute

num_heads = num_heads

patch_embed instance-attribute

patch_embed = Qwen2_5_VisionPatchEmbed(
    patch_size=patch_size,
    temporal_patch_size=temporal_patch_size,
    in_channels=in_channels,
    hidden_size=hidden_size,
)

patch_size instance-attribute

patch_size = patch_size

rotary_pos_emb instance-attribute

rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(
    head_dim // 2
)

spatial_merge_size instance-attribute

spatial_merge_size = spatial_merge_size

spatial_merge_unit instance-attribute

spatial_merge_unit = spatial_merge_size ** 2

window_size instance-attribute

window_size = window_size

__init__

__init__(
    vision_config: Qwen2_5_VLVisionConfig,
    norm_eps: float = 1e-06,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl.py
def __init__(
    self,
    vision_config: Qwen2_5_VLVisionConfig,
    norm_eps: float = 1e-6,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    patch_size = vision_config.patch_size
    temporal_patch_size = vision_config.temporal_patch_size
    in_channels = vision_config.in_channels
    depth = vision_config.depth
    self.hidden_size = vision_config.hidden_size
    self.num_heads = vision_config.num_heads

    # args for get_window_index_thw
    self.window_size = vision_config.window_size
    self.patch_size = vision_config.patch_size
    self.spatial_merge_size = vision_config.spatial_merge_size
    self.fullatt_block_indexes = vision_config.fullatt_block_indexes
    self.spatial_merge_unit = self.spatial_merge_size**2

    self.patch_embed = Qwen2_5_VisionPatchEmbed(
        patch_size=patch_size,
        temporal_patch_size=temporal_patch_size,
        in_channels=in_channels,
        hidden_size=self.hidden_size,
    )

    norm_layer = partial(RMSNorm, eps=norm_eps)
    head_dim = self.hidden_size // self.num_heads
    self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)

    self.blocks = nn.ModuleList([
        Qwen2_5_VisionBlock(
            dim=self.hidden_size,
            num_heads=self.num_heads,
            mlp_hidden_dim=vision_config.intermediate_size,
            act_fn=_ACTIVATION_REGISTRY[vision_config.hidden_act],
            norm_layer=norm_layer,
            quant_config=quant_config,
            prefix=f"{prefix}.blocks.{layer_idx}")
        for layer_idx in range(depth)
    ])
    self.merger = Qwen2_5_VisionPatchMerger(
        d_model=vision_config.out_hidden_size,
        context_dim=self.hidden_size,
        norm_layer=norm_layer,
        spatial_merge_size=self.spatial_merge_size,
        quant_config=quant_config,
        prefix=f"{prefix}.merger",
    )
    self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)

compute_attn_mask_seqlen

compute_attn_mask_seqlen(
    cu_seqlens: Tensor,
) -> tuple[Optional[int], Optional[list[int]]]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def compute_attn_mask_seqlen(
    self,
    cu_seqlens: torch.Tensor,
) -> tuple[Optional[int], Optional[list[int]]]:
    max_seqlen, seqlens = None, None
    if self.attn_backend == _Backend.FLASH_ATTN:
        max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
    elif self.attn_backend == _Backend.XFORMERS:
        seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
    return max_seqlen, seqlens

forward

forward(x: Tensor, grid_thw: list[list[int]]) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl.py
def forward(
    self,
    x: torch.Tensor,
    grid_thw: list[list[int]],
) -> torch.Tensor:
    # patchify
    seq_len, _ = x.size()
    rotary_pos_emb = []
    window_index: list = []
    cu_window_seqlens: list = [torch.tensor([0], dtype=torch.int32)]
    cu_seqlens: list = []

    hidden_states = x.to(device=self.device, dtype=self.dtype)
    hidden_states = self.patch_embed(hidden_states)

    window_index_id = 0
    cu_window_seqlens_last = 0
    for t, h, w in grid_thw:
        t, h, w = int(t), int(h), int(w)
        llm_h = h // self.spatial_merge_size
        llm_w = w // self.spatial_merge_size

        (
            rotary_pos_emb_thw,
            window_index_thw,
            cu_seqlens_window_thw,
            cu_seqlens_thw,
        ) = self.get_rope_by_thw(t, h, w)

        window_index.append(window_index_thw + window_index_id)
        window_index_id += (t * llm_h * llm_w)

        cu_seqlens_window_thw = (cu_seqlens_window_thw +
                                 cu_window_seqlens_last)
        cu_window_seqlens_last = cu_seqlens_window_thw[-1]
        cu_window_seqlens.append(cu_seqlens_window_thw)

        rotary_pos_emb.append(rotary_pos_emb_thw)

        cu_seqlens.append(cu_seqlens_thw)

    rotary_pos_emb = torch.cat(rotary_pos_emb)
    window_index = torch.cat(window_index)
    cu_window_seqlens = torch.cat(cu_window_seqlens)
    cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
    cu_seqlens = torch.cat(cu_seqlens)
    cu_seqlens = torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32)
    cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)

    # transformers
    # pre-compute seqlens for window/full attn to reduce cuMemcpy operations
    max_seqlen_full, seqlens_full = self.compute_attn_mask_seqlen(
        cu_seqlens)
    max_seqlen_window, seqlens_window = self.compute_attn_mask_seqlen(
        cu_window_seqlens)

    cu_seqlens = cu_seqlens.to(device=self.device, non_blocking=True)
    cu_window_seqlens = cu_window_seqlens.to(device=self.device,
                                             non_blocking=True)
    rotary_pos_emb = rotary_pos_emb.to(device=self.device,
                                       non_blocking=True)
    window_index = window_index.to(device=hidden_states.device,
                                   non_blocking=True)

    hidden_states = hidden_states.reshape(
        seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
    hidden_states = hidden_states[window_index, :, :]
    hidden_states = hidden_states.reshape(seq_len, -1)

    hidden_states = hidden_states.unsqueeze(1)

    for layer_num, blk in enumerate(self.blocks):
        if layer_num in self.fullatt_block_indexes:
            cu_seqlens_now = cu_seqlens
            max_seqlen_now = max_seqlen_full
            seqlens_now = seqlens_full
        else:
            cu_seqlens_now = cu_window_seqlens
            max_seqlen_now = max_seqlen_window
            seqlens_now = seqlens_window

        hidden_states = blk(
            hidden_states,
            cu_seqlens=cu_seqlens_now,
            rotary_pos_emb=rotary_pos_emb,
            max_seqlen=max_seqlen_now,
            seqlens=seqlens_now,
        )

    # For Qwen2.5-VL-3B, float16 will overflow at last block
    # for long visual tokens sequences.
    if hidden_states.dtype == torch.float16:
        hidden_states = cast_overflow_tensors(hidden_states)

    # adapter
    hidden_states = self.merger(hidden_states)
    reverse_indices = torch.argsort(window_index)
    hidden_states = hidden_states[reverse_indices, :]
    return hidden_states

get_rope_by_thw cached

get_rope_by_thw(t, h, w)
Source code in vllm/model_executor/models/qwen2_5_vl.py
@lru_cache(maxsize=1024)  # noqa: B019
def get_rope_by_thw(self, t, h, w):
    window_index_thw, cu_seqlens_window_thw = self.get_window_index_thw(
        t, h, w)
    rotary_pos_emb_thw = self.rotary_pos_emb_thw(t, h, w)
    rotary_pos_emb_thw = rotary_pos_emb_thw[window_index_thw, :, :]
    rotary_pos_emb_thw = rotary_pos_emb_thw.flatten(start_dim=0, end_dim=1)
    cu_seqlens_thw = torch.repeat_interleave(
        torch.tensor([h * w], dtype=torch.int32), t)
    return (rotary_pos_emb_thw, window_index_thw, cu_seqlens_window_thw,
            cu_seqlens_thw)

get_window_index_thw

get_window_index_thw(grid_t, grid_h, grid_w)
Source code in vllm/model_executor/models/qwen2_5_vl.py
def get_window_index_thw(self, grid_t, grid_h, grid_w):
    vit_merger_window_size = (self.window_size //
                              self.spatial_merge_size // self.patch_size)

    llm_grid_h = grid_h // self.spatial_merge_size
    llm_grid_w = grid_w // self.spatial_merge_size
    index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
        grid_t, llm_grid_h, llm_grid_w)
    pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
    pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
    num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
    num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
    index_padded = F.pad(index, (0, pad_w, 0, pad_h), 'constant', -100)
    index_padded = index_padded.reshape(grid_t, num_windows_h,
                                        vit_merger_window_size,
                                        num_windows_w,
                                        vit_merger_window_size)
    index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
        grid_t, num_windows_h * num_windows_w, vit_merger_window_size,
        vit_merger_window_size)
    seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
    index_padded = index_padded.reshape(-1)
    index_new = index_padded[index_padded != -100]
    cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit
    cu_seqlens_tmp = cu_seqlens_tmp.to(dtype=torch.int32)
    cu_seqlens_tmp = torch.unique_consecutive(cu_seqlens_tmp)

    return index_new, cu_seqlens_tmp

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/qwen2_5_vl.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("attn.qkv.", "attn.q.", "q"),
        ("attn.qkv.", "attn.k.", "k"),
        ("attn.qkv.", "attn.v.", "v"),
    ]
    params_dict = dict(self.named_parameters(remove_duplicate=False))
    loaded_params: set[str] = set()

    for name, loaded_weight in weights:
        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

rotary_pos_emb_thw

rotary_pos_emb_thw(t, h, w)
Source code in vllm/model_executor/models/qwen2_5_vl.py
def rotary_pos_emb_thw(self, t, h, w):
    hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
    wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
    hpos_ids = hpos_ids.reshape(
        h // self.spatial_merge_size,
        self.spatial_merge_size,
        w // self.spatial_merge_size,
        self.spatial_merge_size,
    ).permute(0, 2, 1, 3).flatten()
    wpos_ids = wpos_ids.reshape(
        h // self.spatial_merge_size,
        self.spatial_merge_size,
        w // self.spatial_merge_size,
        self.spatial_merge_size,
    ).permute(0, 2, 1, 3).flatten()
    pos_ids = torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
    max_size = max(h, w)
    rotary_pos_emb_full = self.rotary_pos_emb(max_size)
    rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
    rotary_pos_emb = rotary_pos_emb.reshape(
        rotary_pos_emb.shape[0] // self.spatial_merge_unit,
        self.spatial_merge_unit, -1)

    return rotary_pos_emb

all_gather_interleave

all_gather_interleave(
    local_tensor, hidden_size: int, tp_size: int
)

All-gather the input tensor interleavely across model parallel group.

Source code in vllm/model_executor/models/qwen2_5_vl.py
def all_gather_interleave(local_tensor, hidden_size: int, tp_size: int):
    """All-gather the input tensor interleavely across model parallel group."""
    import torch.distributed as dist
    gathered_tensors = [torch.zeros_like(local_tensor) for _ in range(tp_size)]
    dist.all_gather(gathered_tensors,
                    local_tensor,
                    group=parallel_state.get_tp_group().device_group)

    gathered_tensors_split = [
        torch.split(tensor, hidden_size // tp_size, -1)
        for tensor in gathered_tensors
    ]
    ordered_tensors = [
        tensor for pair in zip(*gathered_tensors_split) for tensor in pair
    ]
    result_tensor = torch.cat(ordered_tensors, dim=-1)
    return result_tensor