vllm.model_executor.models.gpt_neox
Inference-only GPT-NeoX model compatible with HuggingFace weights.
GPTNeoXAttention
¶
Bases: Module
Source code in vllm/model_executor/models/gpt_neox.py
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_size,
scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
dense
instance-attribute
¶
dense = RowParallelLinear(
hidden_size,
hidden_size,
bias=bias,
quant_config=quant_config,
)
query_key_value
instance-attribute
¶
query_key_value = QKVParallelLinear(
hidden_size,
head_size,
total_num_heads,
bias=bias,
quant_config=quant_config,
)
rotary_emb
instance-attribute
¶
rotary_emb = get_rope(
head_size,
rotary_dim=rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
)
__init__
¶
__init__(
config: GPTNeoXConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/gpt_neox.py
forward
¶
Source code in vllm/model_executor/models/gpt_neox.py
GPTNeoXForCausalLM
¶
Bases: Module
, SupportsPP
Source code in vllm/model_executor/models/gpt_neox.py
embed_out
instance-attribute
¶
embed_out = ParallelLMHead(
vocab_size, hidden_size, quant_config=quant_config
)
gpt_neox
instance-attribute
¶
gpt_neox = GPTNeoXModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "gpt_neox"),
)
make_empty_intermediate_tensors
instance-attribute
¶
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt_neox.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/gpt_neox.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/gpt_neox.py
get_input_embeddings
¶
load_weights
¶
GPTNeoXLayer
¶
Bases: Module
Source code in vllm/model_executor/models/gpt_neox.py
attention
instance-attribute
¶
attention = GPTNeoXAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.attention",
)
post_attention_layernorm
instance-attribute
¶
post_attention_layernorm = LayerNorm(
hidden_size, eps=layer_norm_eps
)
__init__
¶
__init__(
config: GPTNeoXConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/gpt_neox.py
forward
¶
Source code in vllm/model_executor/models/gpt_neox.py
GPTNeoXMLP
¶
Bases: Module
Source code in vllm/model_executor/models/gpt_neox.py
dense_4h_to_h
instance-attribute
¶
dense_4h_to_h = RowParallelLinear(
intermediate_size,
hidden_size,
quant_config=quant_config,
)
dense_h_to_4h
instance-attribute
¶
dense_h_to_4h = ColumnParallelLinear(
hidden_size,
intermediate_size,
quant_config=quant_config,
)
__init__
¶
__init__(
config: GPTNeoXConfig,
quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/gpt_neox.py
forward
¶
GPTNeoXModel
¶
Bases: Module
Source code in vllm/model_executor/models/gpt_neox.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
final_layer_norm
instance-attribute
¶
final_layer_norm = LayerNorm(
hidden_size, eps=layer_norm_eps
)
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], hidden_size
)
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt_neox.py
forward
¶
forward(
input_ids: Tensor,
position_ids: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]