Skip to content

vllm.model_executor.models.gpt_neox

Inference-only GPT-NeoX model compatible with HuggingFace weights.

GPTNeoXAttention

Bases: Module

Source code in vllm/model_executor/models/gpt_neox.py
class GPTNeoXAttention(nn.Module):

    def __init__(
        self,
        config: GPTNeoXConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.total_num_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size
        self.head_size = self.hidden_size // self.total_num_heads
        self.bias = getattr(config, "attention_bias", True)

        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
        assert self.total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = (self.total_num_heads //
                          tensor_model_parallel_world_size)

        self.query_key_value = QKVParallelLinear(
            config.hidden_size,
            self.head_size,
            self.total_num_heads,
            bias=self.bias,
            quant_config=quant_config,
        )
        self.dense = RowParallelLinear(
            config.hidden_size,
            config.hidden_size,
            bias=self.bias,
            quant_config=quant_config,
        )
        scaling = self.head_size**-0.5
        rotary_dim = int(self.head_size * config.rotary_pct)
        assert rotary_dim % 2 == 0
        rope_theta = getattr(config, "rope_theta", 10000)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
        self.rotary_emb = get_rope(
            self.head_size,
            rotary_dim=rotary_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
        )
        self.attn = Attention(self.num_heads,
                              self.head_size,
                              scaling,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.query_key_value(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)
        q, k = self.rotary_emb(position_ids, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.dense(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_heads,
    head_size,
    scaling,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

bias instance-attribute

bias = getattr(config, 'attention_bias', True)

dense instance-attribute

dense = RowParallelLinear(
    hidden_size,
    hidden_size,
    bias=bias,
    quant_config=quant_config,
)

head_size instance-attribute

head_size = hidden_size // total_num_heads

hidden_size instance-attribute

hidden_size = hidden_size

num_heads instance-attribute

num_heads = (
    total_num_heads // tensor_model_parallel_world_size
)

query_key_value instance-attribute

query_key_value = QKVParallelLinear(
    hidden_size,
    head_size,
    total_num_heads,
    bias=bias,
    quant_config=quant_config,
)

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_size,
    rotary_dim=rotary_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
)

total_num_heads instance-attribute

total_num_heads = num_attention_heads

__init__

__init__(
    config: GPTNeoXConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/gpt_neox.py
def __init__(
    self,
    config: GPTNeoXConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.total_num_heads = config.num_attention_heads
    self.hidden_size = config.hidden_size
    self.head_size = self.hidden_size // self.total_num_heads
    self.bias = getattr(config, "attention_bias", True)

    tensor_model_parallel_world_size = (
        get_tensor_model_parallel_world_size())
    assert self.total_num_heads % tensor_model_parallel_world_size == 0
    self.num_heads = (self.total_num_heads //
                      tensor_model_parallel_world_size)

    self.query_key_value = QKVParallelLinear(
        config.hidden_size,
        self.head_size,
        self.total_num_heads,
        bias=self.bias,
        quant_config=quant_config,
    )
    self.dense = RowParallelLinear(
        config.hidden_size,
        config.hidden_size,
        bias=self.bias,
        quant_config=quant_config,
    )
    scaling = self.head_size**-0.5
    rotary_dim = int(self.head_size * config.rotary_pct)
    assert rotary_dim % 2 == 0
    rope_theta = getattr(config, "rope_theta", 10000)
    max_position_embeddings = getattr(config, "max_position_embeddings",
                                      8192)
    self.rotary_emb = get_rope(
        self.head_size,
        rotary_dim=rotary_dim,
        max_position=max_position_embeddings,
        base=rope_theta,
    )
    self.attn = Attention(self.num_heads,
                          self.head_size,
                          scaling,
                          cache_config=cache_config,
                          quant_config=quant_config,
                          prefix=f"{prefix}.attn")

forward

forward(
    position_ids: Tensor, hidden_states: Tensor
) -> Tensor
Source code in vllm/model_executor/models/gpt_neox.py
def forward(
    self,
    position_ids: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    qkv, _ = self.query_key_value(hidden_states)
    q, k, v = qkv.chunk(chunks=3, dim=-1)
    q, k = self.rotary_emb(position_ids, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.dense(attn_output)
    return output

GPTNeoXForCausalLM

Bases: Module, SupportsPP

Source code in vllm/model_executor/models/gpt_neox.py
class GPTNeoXForCausalLM(nn.Module, SupportsPP):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config
        self.quant_config = quant_config
        self.gpt_neox = GPTNeoXModel(vllm_config=vllm_config,
                                     prefix=maybe_prefix(prefix, "gpt_neox"))
        self.embed_out = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
        )
        if self.config.tie_word_embeddings:
            self.embed_out.weight = self.gpt_neox.embed_in.weight
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.gpt_neox.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.gpt_neox.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.gpt_neox(input_ids, positions,
                                      intermediate_tensors, inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.embed_out, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

config instance-attribute

config = config

embed_out instance-attribute

embed_out = ParallelLMHead(
    vocab_size, hidden_size, quant_config=quant_config
)

gpt_neox instance-attribute

gpt_neox = GPTNeoXModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "gpt_neox"),
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt_neox.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.config = config
    self.quant_config = quant_config
    self.gpt_neox = GPTNeoXModel(vllm_config=vllm_config,
                                 prefix=maybe_prefix(prefix, "gpt_neox"))
    self.embed_out = ParallelLMHead(
        config.vocab_size,
        config.hidden_size,
        quant_config=quant_config,
    )
    if self.config.tie_word_embeddings:
        self.embed_out.weight = self.gpt_neox.embed_in.weight
    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.gpt_neox.make_empty_intermediate_tensors)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/gpt_neox.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.embed_out, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/gpt_neox.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    hidden_states = self.gpt_neox(input_ids, positions,
                                  intermediate_tensors, inputs_embeds)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/gpt_neox.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.gpt_neox.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/gpt_neox.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

GPTNeoXLayer

Bases: Module

Source code in vllm/model_executor/models/gpt_neox.py
class GPTNeoXLayer(nn.Module):

    def __init__(
        self,
        config: GPTNeoXConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.use_parallel_residual = config.use_parallel_residual
        self.input_layernorm = nn.LayerNorm(config.hidden_size,
                                            eps=config.layer_norm_eps)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
                                                     eps=config.layer_norm_eps)
        self.attention = GPTNeoXAttention(config,
                                          cache_config,
                                          quant_config,
                                          prefix=f"{prefix}.attention")
        self.mlp = GPTNeoXMLP(config, quant_config)

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        attn_input = self.input_layernorm(hidden_states)
        attn_output = self.attention(
            position_ids=position_ids,
            hidden_states=attn_input,
        )

        if self.use_parallel_residual:
            # pseudocode:
            # x = x + attn(ln1(x)) + mlp(ln2(x))
            mlp_input = self.post_attention_layernorm(hidden_states)
            mlp_output = self.mlp(mlp_input)
            hidden_states = mlp_output + attn_output + hidden_states
        else:
            # pseudocode:
            # x = x + attn(ln1(x))
            # x = x + mlp(ln2(x))
            attn_output = attn_output + hidden_states
            mlp_input = self.post_attention_layernorm(attn_output)
            mlp_output = self.mlp(mlp_input)
            hidden_states = mlp_output + attn_output
        return hidden_states

attention instance-attribute

attention = GPTNeoXAttention(
    config,
    cache_config,
    quant_config,
    prefix=f"{prefix}.attention",
)

input_layernorm instance-attribute

input_layernorm = LayerNorm(hidden_size, eps=layer_norm_eps)

mlp instance-attribute

mlp = GPTNeoXMLP(config, quant_config)

post_attention_layernorm instance-attribute

post_attention_layernorm = LayerNorm(
    hidden_size, eps=layer_norm_eps
)

use_parallel_residual instance-attribute

use_parallel_residual = use_parallel_residual

__init__

__init__(
    config: GPTNeoXConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/gpt_neox.py
def __init__(
    self,
    config: GPTNeoXConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.use_parallel_residual = config.use_parallel_residual
    self.input_layernorm = nn.LayerNorm(config.hidden_size,
                                        eps=config.layer_norm_eps)
    self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
                                                 eps=config.layer_norm_eps)
    self.attention = GPTNeoXAttention(config,
                                      cache_config,
                                      quant_config,
                                      prefix=f"{prefix}.attention")
    self.mlp = GPTNeoXMLP(config, quant_config)

forward

forward(
    position_ids: Tensor, hidden_states: Tensor
) -> Tensor
Source code in vllm/model_executor/models/gpt_neox.py
def forward(
    self,
    position_ids: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    attn_input = self.input_layernorm(hidden_states)
    attn_output = self.attention(
        position_ids=position_ids,
        hidden_states=attn_input,
    )

    if self.use_parallel_residual:
        # pseudocode:
        # x = x + attn(ln1(x)) + mlp(ln2(x))
        mlp_input = self.post_attention_layernorm(hidden_states)
        mlp_output = self.mlp(mlp_input)
        hidden_states = mlp_output + attn_output + hidden_states
    else:
        # pseudocode:
        # x = x + attn(ln1(x))
        # x = x + mlp(ln2(x))
        attn_output = attn_output + hidden_states
        mlp_input = self.post_attention_layernorm(attn_output)
        mlp_output = self.mlp(mlp_input)
        hidden_states = mlp_output + attn_output
    return hidden_states

GPTNeoXMLP

Bases: Module

Source code in vllm/model_executor/models/gpt_neox.py
class GPTNeoXMLP(nn.Module):

    def __init__(
        self,
        config: GPTNeoXConfig,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        self.dense_h_to_4h = ColumnParallelLinear(
            config.hidden_size,
            config.intermediate_size,
            quant_config=quant_config,
        )
        self.dense_4h_to_h = RowParallelLinear(
            config.intermediate_size,
            config.hidden_size,
            quant_config=quant_config,
        )
        self.act = get_act_fn(config.hidden_act)

    def forward(self, hidden_states):
        hidden_states, _ = self.dense_h_to_4h(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.dense_4h_to_h(hidden_states)
        return hidden_states

act instance-attribute

act = get_act_fn(hidden_act)

dense_4h_to_h instance-attribute

dense_4h_to_h = RowParallelLinear(
    intermediate_size,
    hidden_size,
    quant_config=quant_config,
)

dense_h_to_4h instance-attribute

dense_h_to_4h = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    quant_config=quant_config,
)

__init__

__init__(
    config: GPTNeoXConfig,
    quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/gpt_neox.py
def __init__(
    self,
    config: GPTNeoXConfig,
    quant_config: Optional[QuantizationConfig] = None,
):
    super().__init__()
    self.dense_h_to_4h = ColumnParallelLinear(
        config.hidden_size,
        config.intermediate_size,
        quant_config=quant_config,
    )
    self.dense_4h_to_h = RowParallelLinear(
        config.intermediate_size,
        config.hidden_size,
        quant_config=quant_config,
    )
    self.act = get_act_fn(config.hidden_act)

forward

forward(hidden_states)
Source code in vllm/model_executor/models/gpt_neox.py
def forward(self, hidden_states):
    hidden_states, _ = self.dense_h_to_4h(hidden_states)
    hidden_states = self.act(hidden_states)
    hidden_states, _ = self.dense_4h_to_h(hidden_states)
    return hidden_states

GPTNeoXModel

Bases: Module

Source code in vllm/model_executor/models/gpt_neox.py
@support_torch_compile
class GPTNeoXModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config

        self.config = config

        self.embed_in = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: GPTNeoXLayer(
                config, cache_config, quant_config, prefix=prefix),
            prefix=f"{prefix}.layers",
        )
        self.final_layer_norm = nn.LayerNorm(config.hidden_size,
                                             eps=config.layer_norm_eps)
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(["hidden_states"],
                                                    config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_in(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
        else:
            hidden_states = intermediate_tensors["hidden_states"]
        for layer in self.layers[self.start_layer:self.end_layer]:
            hidden_states = layer(position_ids, hidden_states)
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({"hidden_states": hidden_states})
        hidden_states = self.final_layer_norm(hidden_states)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if ("attention.bias" in name or "attention.masked_bias" in name
                    or "rotary_emb.inv_freq" in name):
                continue
            if ("rotary_emb.cos_cached" in name
                    or "rotary_emb.sin_cached" in name):
                # Models trained using OpenRLHF may include
                # these tensors in the checkpoint. Skip them.
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]

            if "query_key_value" in name:
                # NOTE: GPT-NeoX's fused QKV's output_dim has the shape of
                # (num_heads * 3 * head_size), while the
                # required shape is (3 * num_heads * head_size).
                # Thus, we need weight conversion.
                output_dim = getattr(param, "output_dim", None)
                num_heads = self.config.num_attention_heads
                if output_dim is not None:
                    loaded_weight_shape = loaded_weight.shape
                    loaded_weight = loaded_weight.view(
                        loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
                        loaded_weight_shape[output_dim + 1:])
                    loaded_weight = loaded_weight.transpose(
                        output_dim, output_dim + 1)
                    loaded_weight = loaded_weight.reshape(loaded_weight_shape)

            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

embed_in instance-attribute

embed_in = VocabParallelEmbedding(vocab_size, hidden_size)

final_layer_norm instance-attribute

final_layer_norm = LayerNorm(
    hidden_size, eps=layer_norm_eps
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states"], hidden_size
    )
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt_neox.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config

    self.config = config

    self.embed_in = VocabParallelEmbedding(
        config.vocab_size,
        config.hidden_size,
    )
    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: GPTNeoXLayer(
            config, cache_config, quant_config, prefix=prefix),
        prefix=f"{prefix}.layers",
    )
    self.final_layer_norm = nn.LayerNorm(config.hidden_size,
                                         eps=config.layer_norm_eps)
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(["hidden_states"],
                                                config.hidden_size))

forward

forward(
    input_ids: Tensor,
    position_ids: Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/gpt_neox.py
def forward(
    self,
    input_ids: torch.Tensor,
    position_ids: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
    else:
        hidden_states = intermediate_tensors["hidden_states"]
    for layer in self.layers[self.start_layer:self.end_layer]:
        hidden_states = layer(position_ids, hidden_states)
    if not get_pp_group().is_last_rank:
        return IntermediateTensors({"hidden_states": hidden_states})
    hidden_states = self.final_layer_norm(hidden_states)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/gpt_neox.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_in(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/gpt_neox.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if ("attention.bias" in name or "attention.masked_bias" in name
                or "rotary_emb.inv_freq" in name):
            continue
        if ("rotary_emb.cos_cached" in name
                or "rotary_emb.sin_cached" in name):
            # Models trained using OpenRLHF may include
            # these tensors in the checkpoint. Skip them.
            continue
        if is_pp_missing_parameter(name, self):
            continue
        param = params_dict[name]

        if "query_key_value" in name:
            # NOTE: GPT-NeoX's fused QKV's output_dim has the shape of
            # (num_heads * 3 * head_size), while the
            # required shape is (3 * num_heads * head_size).
            # Thus, we need weight conversion.
            output_dim = getattr(param, "output_dim", None)
            num_heads = self.config.num_attention_heads
            if output_dim is not None:
                loaded_weight_shape = loaded_weight.shape
                loaded_weight = loaded_weight.view(
                    loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
                    loaded_weight_shape[output_dim + 1:])
                loaded_weight = loaded_weight.transpose(
                    output_dim, output_dim + 1)
                loaded_weight = loaded_weight.reshape(loaded_weight_shape)

        weight_loader = getattr(param, "weight_loader",
                                default_weight_loader)
        weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params