vllm.model_executor.models.jais
Inference-only Jais model compatible with HuggingFace weights.
JAISAttention
¶
Bases: Module
Source code in vllm/model_executor/models/jais.py
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scale=scale,
alibi_slopes=alibi_slopes,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
c_attn
instance-attribute
¶
c_attn = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
bias=True,
quant_config=quant_config,
)
c_proj
instance-attribute
¶
c_proj = RowParallelLinear(
hidden_size,
hidden_size,
bias=True,
quant_config=quant_config,
)
__init__
¶
__init__(
config: JAISConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/jais.py
forward
¶
Source code in vllm/model_executor/models/jais.py
JAISBlock
¶
Bases: Module
Source code in vllm/model_executor/models/jais.py
attn
instance-attribute
¶
attn = JAISAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.attn",
)
__init__
¶
__init__(
config: JAISConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/jais.py
forward
¶
Source code in vllm/model_executor/models/jais.py
JAISLMHeadModel
¶
Bases: Module
, SupportsPP
Source code in vllm/model_executor/models/jais.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
|
logits_processor
instance-attribute
¶
logits_processor = LogitsProcessor(
vocab_size=vocab_size, scale=output_logits_scale
)
make_empty_intermediate_tensors
instance-attribute
¶
transformer
instance-attribute
¶
transformer = JAISModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/jais.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[IntermediateTensors, Tensor]
Source code in vllm/model_executor/models/jais.py
get_input_embeddings
¶
load_weights
¶
Source code in vllm/model_executor/models/jais.py
JAISMLP
¶
Bases: Module
Source code in vllm/model_executor/models/jais.py
c_fc
instance-attribute
¶
c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
)
c_fc2
instance-attribute
¶
c_fc2 = (
ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
)
if swiglu
else None
)
c_proj
instance-attribute
¶
c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
)
__init__
¶
__init__(
intermediate_size: int,
config: JAISConfig,
quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/jais.py
forward
¶
Source code in vllm/model_executor/models/jais.py
JAISModel
¶
Bases: Module
Source code in vllm/model_executor/models/jais.py
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], n_embd
)
)
wpe
instance-attribute
¶
wpe = (
Embedding(max_position_embeddings, embed_dim)
if position_embedding_type != "alibi"
else None
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/jais.py
forward
¶
forward(
input_ids: Tensor,
position_ids: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[IntermediateTensors, Tensor]