vllm.model_executor.models.blip2
Blip2ImageInputs
module-attribute
¶
Blip2ImageInputs = Union[
Blip2ImagePixelInputs, Blip2ImageEmbeddingInputs
]
Blip2DummyInputsBuilder
¶
Bases: BaseDummyInputsBuilder[Blip2ProcessingInfo]
Source code in vllm/model_executor/models/blip2.py
get_dummy_mm_data
¶
get_dummy_mm_data(
seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/blip2.py
Blip2ForConditionalGeneration
¶
Bases: Module
, SupportsMultiModal
, SupportsPP
, SupportsQuant
Source code in vllm/model_executor/models/blip2.py
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
|
language_model
instance-attribute
¶
language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
language_projection
instance-attribute
¶
language_projection = Linear(
hidden_size, hidden_size, bias=True
)
make_empty_intermediate_tensors
instance-attribute
¶
qformer
instance-attribute
¶
qformer = Blip2QFormerModel(
qformer_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.qformer",
)
query_tokens
instance-attribute
¶
query_tokens = Parameter(
zeros(1, num_query_tokens, hidden_size)
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/blip2.py
_image_pixels_to_features
¶
_image_pixels_to_features(
vision_model: BlipVisionModel, pixel_values: Tensor
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
_parse_and_validate_image_input
¶
_parse_and_validate_image_input(
**kwargs: object,
) -> Optional[Blip2ImageInputs]
Source code in vllm/model_executor/models/blip2.py
_process_image_input
¶
_process_image_input(
image_input: Blip2ImageInputs,
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
_process_image_pixels
¶
_process_image_pixels(
inputs: Blip2ImagePixelInputs,
) -> Tensor
_validate_pixel_values
¶
Source code in vllm/model_executor/models/blip2.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
**kwargs: object,
) -> IntermediateTensors
Run forward pass for BLIP-2.
One key thing to understand is the input_ids
already accounts for the
positions of the to-be-inserted image embeddings.
Concretely, consider a text prompt:
"Question: What's the content of the image? Answer:"
.
Tokenizer outputs:
[2, 45641, 35, 653, 18, 5, 1383, 9, 5, 2274, 116, 31652, 35]
.
To reserve space in KV cache, we have to insert placeholder tokens
before they are inputted to the model, so the input processor prepends
dummy tokens (denoted as 50265
), resulting in:
[50265, ..., 50265, 2, 45641, 35, ..., 31652, 35]
.
We insert 32 tokens since it corresponds to the number of query embeddings outputted by the Q-Former and inputted to the language model.
This way, the positions
and attn_metadata
are consistent
with the input_ids
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids
|
Tensor
|
Flattened (concatenated) input_ids corresponding to a batch. |
required |
pixel_values
|
The pixels in each input image. |
required |
Info
[Blip2ImageInputs][]
Source code in vllm/model_executor/models/blip2.py
get_input_embeddings
¶
get_input_embeddings(
input_ids: Tensor,
multimodal_embeddings: Optional[
MultiModalEmbeddings
] = None,
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
get_multimodal_embeddings
¶
get_multimodal_embeddings(
**kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/blip2.py
get_placeholder_str
classmethod
¶
Blip2MultiModalProcessor
¶
Bases: BaseMultiModalProcessor[Blip2ProcessingInfo]
Source code in vllm/model_executor/models/blip2.py
_call_hf_processor
¶
_call_hf_processor(
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/blip2.py
_get_mm_fields_config
¶
_get_mm_fields_config(
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/blip2.py
_get_prompt_updates
¶
_get_prompt_updates(
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/blip2.py
Blip2ProcessingInfo
¶
Bases: BaseProcessingInfo
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerAttention
¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
attention
instance-attribute
¶
attention = Blip2QFormerMultiHeadAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=is_cross_attention,
prefix=f"{prefix}.attention",
)
__init__
¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
is_cross_attention: bool = False,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
forward
¶
forward(
hidden_states: Tensor,
encoder_hidden_states: Optional[FloatTensor] = None,
) -> tuple[Tensor]
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerEncoder
¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
layer
instance-attribute
¶
layer = ModuleList(
[
Blip2QFormerLayer(
config,
quant_config=quant_config,
cache_config=cache_config,
layer_idx=layer_idx,
prefix=f"{prefix}.layer.{layer_idx}",
)
for layer_idx in range(num_hidden_layers)
]
)
__init__
¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
forward
¶
forward(
hidden_states: FloatTensor,
encoder_hidden_states: FloatTensor,
query_length: int,
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerIntermediate
¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerLayer
¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
|
attention
instance-attribute
¶
attention = Blip2QFormerAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.attention",
)
crossattention
instance-attribute
¶
crossattention = Blip2QFormerAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=True,
prefix=f"{prefix}.crossattention",
)
intermediate_query
instance-attribute
¶
intermediate_query = Blip2QFormerIntermediate(
config, prefix=f"{prefix}.intermediate_query"
)
output_query
instance-attribute
¶
output_query = Blip2QFormerOutput(
config, prefix=f"{prefix}.output_query"
)
__init__
¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
layer_idx: int,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
feed_forward_chunk
¶
feed_forward_chunk_query
¶
Source code in vllm/model_executor/models/blip2.py
forward
¶
forward(
hidden_states: FloatTensor,
encoder_hidden_states: FloatTensor,
query_length: int,
)
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerModel
¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
encoder
instance-attribute
¶
encoder = Blip2QFormerEncoder(
config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.encoder",
)
__init__
¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
forward
¶
forward(
query_embeds: FloatTensor,
encoder_hidden_states: FloatTensor,
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerMultiHeadAttention
¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
position_embedding_type
instance-attribute
¶
position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
__init__
¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
is_cross_attention: bool = False,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
forward
¶
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerOutput
¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerSelfOutput
¶
Bases: Module