vllm.model_executor.models.dbrx
DbrxAttention
¶
Bases: Module
Source code in vllm/model_executor/models/dbrx.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
Wqkv
instance-attribute
¶
Wqkv = QKVParallelLinear(
d_model,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=False,
quant_config=quant_config,
)
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
out_proj
instance-attribute
¶
out_proj = RowParallelLinear(
d_model, d_model, bias=False, quant_config=quant_config
)
rotary_emb
instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position,
base=int(rope_theta),
is_neox_style=True,
)
__init__
¶
__init__(
config: DbrxConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/dbrx.py
forward
¶
Source code in vllm/model_executor/models/dbrx.py
DbrxBlock
¶
Bases: Module
Source code in vllm/model_executor/models/dbrx.py
norm_attn_norm
instance-attribute
¶
norm_attn_norm = DbrxFusedNormAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.norm_attn_norm",
)
__init__
¶
__init__(
config: DbrxConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/dbrx.py
forward
¶
Source code in vllm/model_executor/models/dbrx.py
DbrxExperts
¶
Bases: FusedMoE
Source code in vllm/model_executor/models/dbrx.py
__init__
¶
__init__(
config: DbrxConfig,
quant_config: Optional[QuantizationConfig] = None,
params_dtype: Optional[dtype] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/dbrx.py
weight_loader
¶
Source code in vllm/model_executor/models/dbrx.py
DbrxForCausalLM
¶
Bases: Module
, SupportsPP
Source code in vllm/model_executor/models/dbrx.py
lm_head
instance-attribute
¶
lm_head = ParallelLMHead(
vocab_size,
d_model,
org_num_embeddings=vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
quant_config=quant_config,
)
logits_processor
instance-attribute
¶
logits_processor = LogitsProcessor(
unpadded_vocab_size, vocab_size
)
make_empty_intermediate_tensors
instance-attribute
¶
transformer
instance-attribute
¶
transformer = DbrxModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/dbrx.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/dbrx.py
get_input_embeddings
¶
DbrxFusedNormAttention
¶
Bases: Module
Source code in vllm/model_executor/models/dbrx.py
attn
instance-attribute
¶
attn = DbrxAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.attn",
)
__init__
¶
__init__(
config: DbrxConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/dbrx.py
forward
¶
Source code in vllm/model_executor/models/dbrx.py
DbrxMoE
¶
Bases: Module
A tensor-parallel MoE implementation for DBRX.
Each expert's weights are sharded across all ranks and a fused MoE kernel is used for the forward pass, and finally we reduce the outputs across ranks.
Source code in vllm/model_executor/models/dbrx.py
experts
instance-attribute
¶
experts = DbrxExperts(
config=config,
quant_config=quant_config,
params_dtype=params_dtype,
prefix=f"{prefix}.experts",
)
__init__
¶
__init__(
config: DbrxConfig,
quant_config: Optional[QuantizationConfig] = None,
params_dtype: Optional[dtype] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/dbrx.py
forward
¶
Source code in vllm/model_executor/models/dbrx.py
DbrxModel
¶
Bases: Module
Source code in vllm/model_executor/models/dbrx.py
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
|
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], d_model
)
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/dbrx.py
forward
¶
forward(
input_ids: Tensor,
position_ids: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/dbrx.py
get_input_embeddings
¶
load_weights
¶
Source code in vllm/model_executor/models/dbrx.py
DbrxRouter
¶
Bases: Module
A Router implementation for DBRX that returns logits for each expert per token.
Source code in vllm/model_executor/models/dbrx.py
layer
instance-attribute
¶
layer = ReplicatedLinear(
d_model,
num_total_experts,
bias=False,
params_dtype=params_dtype,
quant_config=None,
)
__init__
¶
__init__(
config: DbrxConfig, params_dtype: Optional[dtype] = None
)