vllm.model_executor.models.idefics2_vision_model
PyTorch Idefics2 model.
Idefics2Encoder
¶
Bases: Module
Transformer encoder consisting of config.num_hidden_layers
self attention
layers. Each layer is a
[Idefics2EncoderLayer
].
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Idefics2Config
|
Idefics2Config |
required |
Source code in vllm/model_executor/models/idefics2_vision_model.py
layers
instance-attribute
¶
layers = ModuleList(
[
Idefics2EncoderLayer(
config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}",
)
for layer_idx in range(num_hidden_layers)
]
)
__init__
¶
__init__(
config: Idefics2Config,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs_embeds
|
Tensor
|
Optionally, instead of passing |
required |
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2EncoderLayer
¶
Bases: Module
Source code in vllm/model_executor/models/idefics2_vision_model.py
mlp
instance-attribute
¶
mlp = Idefics2VisionMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self_attn
instance-attribute
¶
self_attn = Idefics2VisionAttention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
__init__
¶
__init__(
config: Idefics2Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hidden_states
|
`torch.FloatTensor`
|
Input to the layer of shape |
required |
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2VisionAttention
¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in vllm/model_executor/models/idefics2_vision_model.py
out_proj
instance-attribute
¶
out_proj = RowParallelLinear(
embed_dim,
embed_dim,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
qkv_proj
instance-attribute
¶
qkv_proj = QKVParallelLinear(
embed_dim,
head_dim,
num_heads,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
__init__
¶
__init__(
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward
¶
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2VisionEmbeddings
¶
Bases: Module
This is a modified version of siglip.modelign_siglip.SiglipVisionEmbeddings
to enable images of variable
resolution.
The modifications are adapted from Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution which allows treating images in their native aspect ratio and without the need to resize them to the same fixed size. In particular, we start from the original pre-trained SigLIP model(which uses images of fixed-size square images) and adapt it by training on images of variable resolutions.
Source code in vllm/model_executor/models/idefics2_vision_model.py
patch_embedding
instance-attribute
¶
patch_embedding = Conv2d(
in_channels=num_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=patch_size,
padding="valid",
)
__init__
¶
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward
¶
forward(
pixel_values: FloatTensor,
patch_attention_mask: BoolTensor,
tgt_sizes: Optional[IntTensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2VisionMLP
¶
Bases: Module
Source code in vllm/model_executor/models/idefics2_vision_model.py
fc1
instance-attribute
¶
fc1 = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
fc2
instance-attribute
¶
fc2 = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
__init__
¶
__init__(
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward
¶
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2VisionTransformer
¶
Bases: Module
Source code in vllm/model_executor/models/idefics2_vision_model.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
|
encoder
instance-attribute
¶
encoder = Idefics2Encoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
)
post_layernorm
instance-attribute
¶
__init__
¶
__init__(
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: bool = True,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward
¶
forward(
pixel_values,
patch_attention_mask: Optional[BoolTensor] = None,
tgt_sizes: Optional[IntTensor] = None,
) -> Tensor