Skip to content

vllm.model_executor.models.minicpm_eagle

Inference-only EagleMiniCPM model compatible with HuggingFace weights.

EagleMiniCPMDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/minicpm_eagle.py
class EagleMiniCPMDecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.config = config
        self.cache_config = cache_config
        self.quant_config = quant_config
        self.hidden_size = config.hidden_size
        self.rope_theta = getattr(config, "rope_theta", 10000)
        self.rope_scaling = getattr(config, "rope_scaling", None)
        self.max_position_embeddings = getattr(config,
                                               "max_position_embeddings", 8192)
        self.prefix = prefix
        self._init_attn_block()
        self._init_ffn_block()

    def _init_attn_block(self):
        self.input_layernorm = RMSNorm(self.config.hidden_size,
                                       eps=self.config.rms_norm_eps)
        self.self_attn = EagleMiniCPMAttention(
            hidden_size=self.hidden_size,
            num_heads=self.config.num_attention_heads,
            num_kv_heads=self.config.num_key_value_heads,
            rope_theta=self.rope_theta,
            rope_scaling=self.rope_scaling,
            max_position_embeddings=self.max_position_embeddings,
            cache_config=self.cache_config,
            quant_config=self.quant_config,
            prefix=f"{self.prefix}.self_attn",
        )

    def _init_ffn_block(self):
        self.post_attention_layernorm = RMSNorm(self.config.hidden_size,
                                                eps=self.config.rms_norm_eps)
        self.num_experts = getattr(self.config, "num_experts", 0)
        if self.num_experts == 0:
            self.mlp = EagleMiniCPMMLP(
                hidden_size=self.hidden_size,
                intermediate_size=self.config.intermediate_size,
                hidden_act=self.config.hidden_act,
                hidden_act_param=getattr(self.config, "hidden_act_param", 0.),
                quant_config=self.quant_config,
            )
        else:
            self.mlp = EagleMiniCPMMoE(
                num_experts=self.config.num_experts,
                top_k=self.config.num_experts_per_tok,
                hidden_size=self.config.hidden_size,
                intermediate_size=self.config.intermediate_size)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )
        hidden_states = residual + hidden_states * \
            (self.config.scale_depth / math.sqrt(self.config.mup_denominator))

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states * \
            (self.config.scale_depth / math.sqrt(self.config.mup_denominator))

        return hidden_states, None

cache_config instance-attribute

cache_config = cache_config

config instance-attribute

config = config

hidden_size instance-attribute

hidden_size = hidden_size

max_position_embeddings instance-attribute

max_position_embeddings = getattr(
    config, "max_position_embeddings", 8192
)

prefix instance-attribute

prefix = prefix

quant_config instance-attribute

quant_config = quant_config

rope_scaling instance-attribute

rope_scaling = getattr(config, 'rope_scaling', None)

rope_theta instance-attribute

rope_theta = getattr(config, 'rope_theta', 10000)

__init__

__init__(
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/minicpm_eagle.py
def __init__(
    self,
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.config = config
    self.cache_config = cache_config
    self.quant_config = quant_config
    self.hidden_size = config.hidden_size
    self.rope_theta = getattr(config, "rope_theta", 10000)
    self.rope_scaling = getattr(config, "rope_scaling", None)
    self.max_position_embeddings = getattr(config,
                                           "max_position_embeddings", 8192)
    self.prefix = prefix
    self._init_attn_block()
    self._init_ffn_block()

_init_attn_block

_init_attn_block()
Source code in vllm/model_executor/models/minicpm_eagle.py
def _init_attn_block(self):
    self.input_layernorm = RMSNorm(self.config.hidden_size,
                                   eps=self.config.rms_norm_eps)
    self.self_attn = EagleMiniCPMAttention(
        hidden_size=self.hidden_size,
        num_heads=self.config.num_attention_heads,
        num_kv_heads=self.config.num_key_value_heads,
        rope_theta=self.rope_theta,
        rope_scaling=self.rope_scaling,
        max_position_embeddings=self.max_position_embeddings,
        cache_config=self.cache_config,
        quant_config=self.quant_config,
        prefix=f"{self.prefix}.self_attn",
    )

_init_ffn_block

_init_ffn_block()
Source code in vllm/model_executor/models/minicpm_eagle.py
def _init_ffn_block(self):
    self.post_attention_layernorm = RMSNorm(self.config.hidden_size,
                                            eps=self.config.rms_norm_eps)
    self.num_experts = getattr(self.config, "num_experts", 0)
    if self.num_experts == 0:
        self.mlp = EagleMiniCPMMLP(
            hidden_size=self.hidden_size,
            intermediate_size=self.config.intermediate_size,
            hidden_act=self.config.hidden_act,
            hidden_act_param=getattr(self.config, "hidden_act_param", 0.),
            quant_config=self.quant_config,
        )
    else:
        self.mlp = EagleMiniCPMMoE(
            num_experts=self.config.num_experts,
            top_k=self.config.num_experts_per_tok,
            hidden_size=self.config.hidden_size,
            intermediate_size=self.config.intermediate_size)

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/minicpm_eagle.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
    # Self Attention
    residual = hidden_states
    hidden_states = self.input_layernorm(hidden_states)
    hidden_states = self.self_attn(
        positions=positions,
        hidden_states=hidden_states,
    )
    hidden_states = residual + hidden_states * \
        (self.config.scale_depth / math.sqrt(self.config.mup_denominator))

    # Fully Connected
    residual = hidden_states
    hidden_states = self.post_attention_layernorm(hidden_states)
    hidden_states = self.mlp(hidden_states)
    hidden_states = residual + hidden_states * \
        (self.config.scale_depth / math.sqrt(self.config.mup_denominator))

    return hidden_states, None

EagleMiniCPMForCausalLM

Bases: Module, SupportsLoRA, SupportsPP

Source code in vllm/model_executor/models/minicpm_eagle.py
class EagleMiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    # LoRA specific attributes
    embedding_modules = {
        "embed_tokens": "input_embeddings",
        "lm_head": "output_embeddings",
    }
    embedding_padding_modules = ["lm_head"]

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.speculative_config.draft_model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.prefix = prefix
        self.vllm_config = vllm_config
        self.config = config
        self.lora_config = lora_config
        self.cache_config = cache_config
        self.quant_config = quant_config

        target_layer_num = vllm_config.model_config.get_num_layers(
            vllm_config.parallel_config)

        self.model = self._init_model(vllm_config=vllm_config,
                                      prefix=maybe_prefix(prefix, "model"),
                                      start_layer=target_layer_num)

        unpadded_vocab_size = config.vocab_size
        if lora_config:
            unpadded_vocab_size += lora_config.lora_extra_vocab_size
        self.lm_head = ParallelLMHead(
            unpadded_vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            padding_size=DEFAULT_VOCAB_PADDING_SIZE
            # We need bigger padding if using lora for kernel
            # compatibility
            if not lora_config else lora_config.lora_vocab_padding_size,
            quant_config=quant_config,
        )
        if config.tie_word_embeddings:
            self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
        self.scale_width = self.config.hidden_size / self.config.dim_model_base

        self.logits_processor = LogitsProcessor(unpadded_vocab_size,
                                                config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def _init_model(self,
                    *,
                    vllm_config: VllmConfig,
                    prefix: str = "",
                    start_layer: int = 0):
        return EagleMiniCPMModel(vllm_config=vllm_config,
                                 prefix=prefix,
                                 start_layer=start_layer)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        hidden_states, hidden_states2 = self.model(input_ids, positions,
                                                   hidden_states)
        hidden_states = hidden_states / self.scale_width
        hidden_states2 = hidden_states2 / self.scale_width
        return hidden_states, hidden_states2

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(
            self,
            skip_prefixes=(["lm_head."]
                           if self.config.tie_word_embeddings else None),
        )
        return loader.load_weights(weights)

cache_config instance-attribute

cache_config = cache_config

config instance-attribute

config = config

embedding_modules class-attribute instance-attribute

embedding_modules = {
    "embed_tokens": "input_embeddings",
    "lm_head": "output_embeddings",
}

embedding_padding_modules class-attribute instance-attribute

embedding_padding_modules = ['lm_head']

lm_head instance-attribute

lm_head = ParallelLMHead(
    unpadded_vocab_size,
    hidden_size,
    org_num_embeddings=vocab_size,
    padding_size=DEFAULT_VOCAB_PADDING_SIZE
    if not lora_config
    else lora_vocab_padding_size,
    quant_config=quant_config,
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(
    unpadded_vocab_size, vocab_size
)

lora_config instance-attribute

lora_config = lora_config

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = _init_model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
    start_layer=target_layer_num,
)

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

prefix instance-attribute

prefix = prefix

quant_config instance-attribute

quant_config = quant_config

scale_width instance-attribute

scale_width = hidden_size / dim_model_base

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/minicpm_eagle.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.speculative_config.draft_model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config

    self.prefix = prefix
    self.vllm_config = vllm_config
    self.config = config
    self.lora_config = lora_config
    self.cache_config = cache_config
    self.quant_config = quant_config

    target_layer_num = vllm_config.model_config.get_num_layers(
        vllm_config.parallel_config)

    self.model = self._init_model(vllm_config=vllm_config,
                                  prefix=maybe_prefix(prefix, "model"),
                                  start_layer=target_layer_num)

    unpadded_vocab_size = config.vocab_size
    if lora_config:
        unpadded_vocab_size += lora_config.lora_extra_vocab_size
    self.lm_head = ParallelLMHead(
        unpadded_vocab_size,
        config.hidden_size,
        org_num_embeddings=config.vocab_size,
        padding_size=DEFAULT_VOCAB_PADDING_SIZE
        # We need bigger padding if using lora for kernel
        # compatibility
        if not lora_config else lora_config.lora_vocab_padding_size,
        quant_config=quant_config,
    )
    if config.tie_word_embeddings:
        self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
    self.scale_width = self.config.hidden_size / self.config.dim_model_base

    self.logits_processor = LogitsProcessor(unpadded_vocab_size,
                                            config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

_init_model

_init_model(
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    start_layer: int = 0,
)
Source code in vllm/model_executor/models/minicpm_eagle.py
def _init_model(self,
                *,
                vllm_config: VllmConfig,
                prefix: str = "",
                start_layer: int = 0):
    return EagleMiniCPMModel(vllm_config=vllm_config,
                             prefix=prefix,
                             start_layer=start_layer)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/minicpm_eagle.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    hidden_states: Tensor,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/minicpm_eagle.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
    hidden_states, hidden_states2 = self.model(input_ids, positions,
                                               hidden_states)
    hidden_states = hidden_states / self.scale_width
    hidden_states2 = hidden_states2 / self.scale_width
    return hidden_states, hidden_states2

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/minicpm_eagle.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/minicpm_eagle.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(
        self,
        skip_prefixes=(["lm_head."]
                       if self.config.tie_word_embeddings else None),
    )
    return loader.load_weights(weights)

EagleMiniCPMModel

Bases: Module

Source code in vllm/model_executor/models/minicpm_eagle.py
@support_torch_compile
class EagleMiniCPMModel(nn.Module):

    def __init__(self,
                 *,
                 vllm_config: VllmConfig,
                 prefix: str = "",
                 start_layer: int = 0):
        super().__init__()

        config = vllm_config.speculative_config.draft_model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        self.cache_config = cache_config
        self.quant_config = quant_config
        lora_vocab = (lora_config.lora_extra_vocab_size *
                      (lora_config.max_loras or 1)) if lora_config else 0
        self.vocab_size = config.vocab_size + lora_vocab
        self.org_vocab_size = config.vocab_size
        self.fc = torch.nn.Linear(self.config.hidden_size * 2,
                                  self.config.hidden_size,
                                  bias=False)
        self.input_norm1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.input_norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.embed_tokens = VocabParallelEmbedding(
            self.vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
        )
        self.num_experts = getattr(self.config, "num_experts", 0)
        self._init_layers(prefix, config, cache_config, quant_config,
                          start_layer)
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], self.config.hidden_size))

    def _init_layers(
        self,
        prefix: str,
        config: PretrainedConfig,
        cache_config: Optional[CacheConfig],
        quant_config: Optional[QuantizationConfig],
        start_layer: int,
    ):
        self.eagle_layers = nn.ModuleList([
            EagleMiniCPMDecoderLayer(
                config,
                cache_config,
                quant_config,
                f"{prefix}.eagle_layers.{i + start_layer}",
            ) for i in range(self.config.num_hidden_layers)
        ])

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        embedding = self.embed_tokens(input_ids)
        return embedding * self.config.scale_emb

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        input_embeds = self.get_input_embeddings(input_ids)
        input_embeds = self.input_norm1(input_embeds)
        hidden_states = self.input_norm2(hidden_states)

        hidden_states = self.fc(
            torch.cat((input_embeds, hidden_states), dim=-1))
        residual = None
        for layer in self.eagle_layers:
            hidden_states, residual = layer(
                positions,
                hidden_states,
                residual,
            )

        return hidden_states, hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        expert_params_mapping = [
            # (param_name, weight_name, expert_id)
            ("ws" if weight_name in ["w1", "w3"] else "w2s",
             f"experts.{expert_id}.{weight_name}.weight", expert_id)
            for expert_id in range(self.num_experts)
            for weight_name in ["w1", "w2", "w3"]
        ]
        params_dict = dict(self.named_parameters())

        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            if ("rotary_emb.cos_cached" in name
                    or "rotary_emb.sin_cached" in name):
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for param_name, weight_name, expert_id in expert_params_mapping:
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    if is_pp_missing_parameter(name, self):
                        continue
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(param,
                                  loaded_weight,
                                  weight_name,
                                  expert_id=expert_id)
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
                    if is_pp_missing_parameter(name, self):
                        continue
                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader",
                                            default_weight_loader)

                    weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

cache_config instance-attribute

cache_config = cache_config

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size, org_num_embeddings=vocab_size
)

fc instance-attribute

fc = Linear(hidden_size * 2, hidden_size, bias=False)

input_norm1 instance-attribute

input_norm1 = RMSNorm(hidden_size, eps=rms_norm_eps)

input_norm2 instance-attribute

input_norm2 = RMSNorm(hidden_size, eps=rms_norm_eps)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states", "residual"], hidden_size
    )
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

num_experts instance-attribute

num_experts = getattr(config, 'num_experts', 0)

org_vocab_size instance-attribute

org_vocab_size = vocab_size

quant_config instance-attribute

quant_config = quant_config

vocab_size instance-attribute

vocab_size = vocab_size + lora_vocab

__init__

__init__(
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    start_layer: int = 0,
)
Source code in vllm/model_executor/models/minicpm_eagle.py
def __init__(self,
             *,
             vllm_config: VllmConfig,
             prefix: str = "",
             start_layer: int = 0):
    super().__init__()

    config = vllm_config.speculative_config.draft_model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config

    self.config = config
    self.cache_config = cache_config
    self.quant_config = quant_config
    lora_vocab = (lora_config.lora_extra_vocab_size *
                  (lora_config.max_loras or 1)) if lora_config else 0
    self.vocab_size = config.vocab_size + lora_vocab
    self.org_vocab_size = config.vocab_size
    self.fc = torch.nn.Linear(self.config.hidden_size * 2,
                              self.config.hidden_size,
                              bias=False)
    self.input_norm1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.input_norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.embed_tokens = VocabParallelEmbedding(
        self.vocab_size,
        config.hidden_size,
        org_num_embeddings=config.vocab_size,
    )
    self.num_experts = getattr(self.config, "num_experts", 0)
    self._init_layers(prefix, config, cache_config, quant_config,
                      start_layer)
    self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], self.config.hidden_size))

_init_layers

_init_layers(
    prefix: str,
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig],
    quant_config: Optional[QuantizationConfig],
    start_layer: int,
)
Source code in vllm/model_executor/models/minicpm_eagle.py
def _init_layers(
    self,
    prefix: str,
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig],
    quant_config: Optional[QuantizationConfig],
    start_layer: int,
):
    self.eagle_layers = nn.ModuleList([
        EagleMiniCPMDecoderLayer(
            config,
            cache_config,
            quant_config,
            f"{prefix}.eagle_layers.{i + start_layer}",
        ) for i in range(self.config.num_hidden_layers)
    ])

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    hidden_states: Tensor,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/minicpm_eagle.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> Union[torch.Tensor, IntermediateTensors]:
    input_embeds = self.get_input_embeddings(input_ids)
    input_embeds = self.input_norm1(input_embeds)
    hidden_states = self.input_norm2(hidden_states)

    hidden_states = self.fc(
        torch.cat((input_embeds, hidden_states), dim=-1))
    residual = None
    for layer in self.eagle_layers:
        hidden_states, residual = layer(
            positions,
            hidden_states,
            residual,
        )

    return hidden_states, hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/minicpm_eagle.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    embedding = self.embed_tokens(input_ids)
    return embedding * self.config.scale_emb

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/minicpm_eagle.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
    ]
    expert_params_mapping = [
        # (param_name, weight_name, expert_id)
        ("ws" if weight_name in ["w1", "w3"] else "w2s",
         f"experts.{expert_id}.{weight_name}.weight", expert_id)
        for expert_id in range(self.num_experts)
        for weight_name in ["w1", "w2", "w3"]
    ]
    params_dict = dict(self.named_parameters())

    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue
        if ("rotary_emb.cos_cached" in name
                or "rotary_emb.sin_cached" in name):
            # Models trained using ColossalAI may include these tensors in
            # the checkpoint. Skip them.
            continue
        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            for param_name, weight_name, expert_id in expert_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param,
                              loaded_weight,
                              weight_name,
                              expert_id=expert_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)

                weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params