Skip to content

vllm.model_executor.models.intern_vit

NORM2FN module-attribute

NORM2FN = {'rms_norm': RMSNorm, 'layer_norm': LayerNorm}

InternMLP

Bases: Module

Source code in vllm/model_executor/models/intern_vit.py
class InternMLP(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        self.activation_fn = get_act_fn(config.hidden_act)
        self.fc1 = ColumnParallelLinear(config.hidden_size,
                                        config.intermediate_size,
                                        bias=True,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.fc1")
        self.fc2 = RowParallelLinear(config.intermediate_size,
                                     config.hidden_size,
                                     bias=True,
                                     quant_config=quant_config,
                                     prefix=f"{prefix}.fc2")

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states, _ = self.fc2(hidden_states)

        return hidden_states

activation_fn instance-attribute

activation_fn = get_act_fn(hidden_act)

config instance-attribute

config = config

fc1 instance-attribute

fc1 = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.fc1",
)

fc2 instance-attribute

fc2 = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.fc2",
)

__init__

__init__(
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/intern_vit.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    self.activation_fn = get_act_fn(config.hidden_act)
    self.fc1 = ColumnParallelLinear(config.hidden_size,
                                    config.intermediate_size,
                                    bias=True,
                                    quant_config=quant_config,
                                    prefix=f"{prefix}.fc1")
    self.fc2 = RowParallelLinear(config.intermediate_size,
                                 config.hidden_size,
                                 bias=True,
                                 quant_config=quant_config,
                                 prefix=f"{prefix}.fc2")

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/intern_vit.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    hidden_states, _ = self.fc1(hidden_states)
    hidden_states = self.activation_fn(hidden_states)
    hidden_states, _ = self.fc2(hidden_states)

    return hidden_states

InternParallelAttention

Bases: Module

Multi-headed attention from 'Attention Is All You Need' paper

Source code in vllm/model_executor/models/intern_vit.py
class InternParallelAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        *,
        num_dummy_heads: int = 0,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f'embed_dim must be divisible by num_heads '
                f'(got `embed_dim`: {self.embed_dim} and `num_heads`:'
                f' {self.num_heads}).')

        self.tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank = get_tensor_model_parallel_rank()

        # Additional dummy heads are used to enable TP for common GPU counts.
        self.dummy_dim = (num_dummy_heads + self.num_heads) * self.head_dim
        self.num_heads_per_partition = divide(num_dummy_heads + self.num_heads,
                                              self.tp_size)

        self.scale = self.head_dim**-0.5
        self.qkv = QKVParallelLinear(
            self.embed_dim,
            self.head_dim,
            num_dummy_heads + self.num_heads,
            bias=config.qkv_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv",
        )

        self.qk_normalization = config.qk_normalization

        if self.qk_normalization:
            self.q_norm = RMSNorm(self.dummy_dim,
                                  eps=config.layer_norm_eps,
                                  var_hidden_size=self.embed_dim)
            self.k_norm = RMSNorm(self.dummy_dim,
                                  eps=config.layer_norm_eps,
                                  var_hidden_size=self.embed_dim)

        self.proj = RowParallelLinear(
            self.dummy_dim,
            self.embed_dim,
            quant_config=quant_config,
            prefix=f"{prefix}.proj",
        )

        self.attn = MultiHeadAttention(self.num_heads_per_partition,
                                       self.head_dim, self.scale)

    def _apply_qk_norm(self, q: torch.Tensor, k: torch.Tensor):
        if self.tp_size > 1:
            q = tensor_model_parallel_all_gather(q.contiguous())
            k = tensor_model_parallel_all_gather(k.contiguous())
        q = self.q_norm(q)
        k = self.k_norm(k)
        if self.tp_size > 1:
            splitter = partial(split_tensor_along_last_dim,
                               num_partitions=self.tp_size)
            q = splitter(q)[self.tp_rank]
            k = splitter(k)[self.tp_rank]
        return q, k

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, _ = x.shape
        qkv, _ = self.qkv(x)
        q, k, v = qkv.chunk(3, dim=-1)

        if self.qk_normalization:
            q, k = self._apply_qk_norm(q, k)

        out = self.attn(q, k, v)
        out, _ = self.proj(out)
        return out

attn instance-attribute

attn = MultiHeadAttention(
    num_heads_per_partition, head_dim, scale
)

config instance-attribute

config = config

dummy_dim instance-attribute

dummy_dim = num_dummy_heads + num_heads * head_dim

embed_dim instance-attribute

embed_dim = hidden_size

head_dim instance-attribute

head_dim = embed_dim // num_heads

k_norm instance-attribute

k_norm = RMSNorm(
    dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)

num_heads instance-attribute

num_heads = num_attention_heads

num_heads_per_partition instance-attribute

num_heads_per_partition = divide(
    num_dummy_heads + num_heads, tp_size
)

proj instance-attribute

proj = RowParallelLinear(
    dummy_dim,
    embed_dim,
    quant_config=quant_config,
    prefix=f"{prefix}.proj",
)

q_norm instance-attribute

q_norm = RMSNorm(
    dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)

qk_normalization instance-attribute

qk_normalization = qk_normalization

qkv instance-attribute

qkv = QKVParallelLinear(
    embed_dim,
    head_dim,
    num_dummy_heads + num_heads,
    bias=qkv_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv",
)

scale instance-attribute

scale = head_dim ** -0.5

tp_rank instance-attribute

tp_size instance-attribute

__init__

__init__(
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_dummy_heads: int = 0,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/intern_vit.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_dummy_heads: int = 0,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    self.embed_dim = config.hidden_size
    self.num_heads = config.num_attention_heads
    self.head_dim = self.embed_dim // self.num_heads
    if self.head_dim * self.num_heads != self.embed_dim:
        raise ValueError(
            f'embed_dim must be divisible by num_heads '
            f'(got `embed_dim`: {self.embed_dim} and `num_heads`:'
            f' {self.num_heads}).')

    self.tp_size = get_tensor_model_parallel_world_size()
    self.tp_rank = get_tensor_model_parallel_rank()

    # Additional dummy heads are used to enable TP for common GPU counts.
    self.dummy_dim = (num_dummy_heads + self.num_heads) * self.head_dim
    self.num_heads_per_partition = divide(num_dummy_heads + self.num_heads,
                                          self.tp_size)

    self.scale = self.head_dim**-0.5
    self.qkv = QKVParallelLinear(
        self.embed_dim,
        self.head_dim,
        num_dummy_heads + self.num_heads,
        bias=config.qkv_bias,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv",
    )

    self.qk_normalization = config.qk_normalization

    if self.qk_normalization:
        self.q_norm = RMSNorm(self.dummy_dim,
                              eps=config.layer_norm_eps,
                              var_hidden_size=self.embed_dim)
        self.k_norm = RMSNorm(self.dummy_dim,
                              eps=config.layer_norm_eps,
                              var_hidden_size=self.embed_dim)

    self.proj = RowParallelLinear(
        self.dummy_dim,
        self.embed_dim,
        quant_config=quant_config,
        prefix=f"{prefix}.proj",
    )

    self.attn = MultiHeadAttention(self.num_heads_per_partition,
                                   self.head_dim, self.scale)

_apply_qk_norm

_apply_qk_norm(q: Tensor, k: Tensor)
Source code in vllm/model_executor/models/intern_vit.py
def _apply_qk_norm(self, q: torch.Tensor, k: torch.Tensor):
    if self.tp_size > 1:
        q = tensor_model_parallel_all_gather(q.contiguous())
        k = tensor_model_parallel_all_gather(k.contiguous())
    q = self.q_norm(q)
    k = self.k_norm(k)
    if self.tp_size > 1:
        splitter = partial(split_tensor_along_last_dim,
                           num_partitions=self.tp_size)
        q = splitter(q)[self.tp_rank]
        k = splitter(k)[self.tp_rank]
    return q, k

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/intern_vit.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    B, N, _ = x.shape
    qkv, _ = self.qkv(x)
    q, k, v = qkv.chunk(3, dim=-1)

    if self.qk_normalization:
        q, k = self._apply_qk_norm(q, k)

    out = self.attn(q, k, v)
    out, _ = self.proj(out)
    return out

InternSdpaAttention

Bases: Module

Multi-headed attention from 'Attention Is All You Need' paper

Source code in vllm/model_executor/models/intern_vit.py
class InternSdpaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        config: PretrainedConfig,
        *,
        num_dummy_heads: int = 0,
    ) -> None:
        super().__init__()

        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f'embed_dim must be divisible by num_heads '
                f'(got `embed_dim`: {self.embed_dim} and `num_heads`:'
                f' {self.num_heads}).')

        # Additional dummy heads are used to enable TP for common GPU counts.
        self.dummy_dim = (num_dummy_heads + self.num_heads) * self.head_dim

        self.scale = self.head_dim**-0.5
        self.qkv = nn.Linear(self.embed_dim,
                             3 * self.dummy_dim,
                             bias=config.qkv_bias)

        self.qk_normalization = config.qk_normalization

        if self.qk_normalization:
            self.q_norm = RMSNorm(self.dummy_dim,
                                  eps=config.layer_norm_eps,
                                  var_hidden_size=self.embed_dim)
            self.k_norm = RMSNorm(self.dummy_dim,
                                  eps=config.layer_norm_eps,
                                  var_hidden_size=self.embed_dim)

        self.proj = nn.Linear(self.dummy_dim, self.embed_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape
        qkv = self.qkv(x)
        q, k, v = qkv.chunk(3, dim=-1)

        q = q.view(B, N, self.num_heads, self.head_dim)
        k = k.view(B, N, self.num_heads, self.head_dim)
        v = v.view(B, N, self.num_heads, self.head_dim)

        if self.qk_normalization:
            B_, N_, H_, D_ = q.shape
            q = self.q_norm(q.flatten(-2, -1)).view(B_, N_, H_, D_)
            k = self.k_norm(k.flatten(-2, -1)).view(B_, N_, H_, D_)
        q = q.transpose(1, 2)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)

        x = F.scaled_dot_product_attention(q, k, v, scale=self.scale)
        x = x.transpose(1, 2).reshape(B, N, -1)

        x = self.proj(x)
        return x

config instance-attribute

config = config

dummy_dim instance-attribute

dummy_dim = num_dummy_heads + num_heads * head_dim

embed_dim instance-attribute

embed_dim = hidden_size

head_dim instance-attribute

head_dim = embed_dim // num_heads

k_norm instance-attribute

k_norm = RMSNorm(
    dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)

num_heads instance-attribute

num_heads = num_attention_heads

proj instance-attribute

proj = Linear(dummy_dim, embed_dim)

q_norm instance-attribute

q_norm = RMSNorm(
    dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)

qk_normalization instance-attribute

qk_normalization = qk_normalization

qkv instance-attribute

qkv = Linear(embed_dim, 3 * dummy_dim, bias=qkv_bias)

scale instance-attribute

scale = head_dim ** -0.5

__init__

__init__(
    config: PretrainedConfig, *, num_dummy_heads: int = 0
) -> None
Source code in vllm/model_executor/models/intern_vit.py
def __init__(
    self,
    config: PretrainedConfig,
    *,
    num_dummy_heads: int = 0,
) -> None:
    super().__init__()

    self.config = config
    self.embed_dim = config.hidden_size
    self.num_heads = config.num_attention_heads
    self.head_dim = self.embed_dim // self.num_heads
    if self.head_dim * self.num_heads != self.embed_dim:
        raise ValueError(
            f'embed_dim must be divisible by num_heads '
            f'(got `embed_dim`: {self.embed_dim} and `num_heads`:'
            f' {self.num_heads}).')

    # Additional dummy heads are used to enable TP for common GPU counts.
    self.dummy_dim = (num_dummy_heads + self.num_heads) * self.head_dim

    self.scale = self.head_dim**-0.5
    self.qkv = nn.Linear(self.embed_dim,
                         3 * self.dummy_dim,
                         bias=config.qkv_bias)

    self.qk_normalization = config.qk_normalization

    if self.qk_normalization:
        self.q_norm = RMSNorm(self.dummy_dim,
                              eps=config.layer_norm_eps,
                              var_hidden_size=self.embed_dim)
        self.k_norm = RMSNorm(self.dummy_dim,
                              eps=config.layer_norm_eps,
                              var_hidden_size=self.embed_dim)

    self.proj = nn.Linear(self.dummy_dim, self.embed_dim)

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/intern_vit.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    B, N, C = x.shape
    qkv = self.qkv(x)
    q, k, v = qkv.chunk(3, dim=-1)

    q = q.view(B, N, self.num_heads, self.head_dim)
    k = k.view(B, N, self.num_heads, self.head_dim)
    v = v.view(B, N, self.num_heads, self.head_dim)

    if self.qk_normalization:
        B_, N_, H_, D_ = q.shape
        q = self.q_norm(q.flatten(-2, -1)).view(B_, N_, H_, D_)
        k = self.k_norm(k.flatten(-2, -1)).view(B_, N_, H_, D_)
    q = q.transpose(1, 2)
    k = k.transpose(1, 2)
    v = v.transpose(1, 2)

    x = F.scaled_dot_product_attention(q, k, v, scale=self.scale)
    x = x.transpose(1, 2).reshape(B, N, -1)

    x = self.proj(x)
    return x

InternVisionEmbeddings

Bases: Module

Source code in vllm/model_executor/models/intern_vit.py
class InternVisionEmbeddings(nn.Module):

    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))

        self.patch_embedding = nn.Conv2d(in_channels=3,
                                         out_channels=self.embed_dim,
                                         kernel_size=self.patch_size,
                                         stride=self.patch_size)

        self.num_patches = (self.image_size // self.patch_size)**2
        self.num_positions = self.num_patches + 1

        self.position_embedding = nn.Parameter(
            torch.randn(1, self.num_positions, self.embed_dim))

    def _get_pos_embed(self, pos_embed: torch.Tensor, H: int, W: int):
        target_dtype = pos_embed.dtype
        pos_embed = pos_embed.float().reshape(
            1, self.image_size // self.patch_size,
            self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
        pos_embed = F.interpolate(pos_embed,
                                  size=(H, W),
                                  mode='bicubic',
                                  align_corners=False)
        return pos_embed.reshape(1, -1, H * W).permute(0, 2,
                                                       1).to(target_dtype)

    def _get_position_embedding(self, H: int, W: int) -> torch.Tensor:
        position_embedding = self.position_embedding
        if self.num_patches == H * W:
            return position_embedding

        return torch.cat(
            [
                position_embedding[:, :1, :],
                self._get_pos_embed(position_embedding[:, 1:, :], H, W),
            ],
            dim=1,
        )

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        target_dtype = self.patch_embedding.weight.dtype
        patch_embeds = self.patch_embedding(pixel_values.to(
            target_dtype))  # shape = [*, channel, width, height]
        batch_size, _, height, width = patch_embeds.shape
        patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
        class_embeds = self.class_embedding.expand(batch_size, 1,
                                                   -1).to(target_dtype)
        embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
        position_embedding = self._get_position_embedding(height, width)
        embeddings = embeddings + position_embedding.to(target_dtype)
        return embeddings

class_embedding instance-attribute

class_embedding = Parameter(randn(1, 1, embed_dim))

config instance-attribute

config = config

embed_dim instance-attribute

embed_dim = hidden_size

image_size instance-attribute

image_size = image_size

num_patches instance-attribute

num_patches = image_size // patch_size ** 2

num_positions instance-attribute

num_positions = num_patches + 1

patch_embedding instance-attribute

patch_embedding = Conv2d(
    in_channels=3,
    out_channels=embed_dim,
    kernel_size=patch_size,
    stride=patch_size,
)

patch_size instance-attribute

patch_size = patch_size

position_embedding instance-attribute

position_embedding = Parameter(
    randn(1, num_positions, embed_dim)
)

__init__

__init__(config: PretrainedConfig)
Source code in vllm/model_executor/models/intern_vit.py
def __init__(self, config: PretrainedConfig):
    super().__init__()
    self.config = config
    self.embed_dim = config.hidden_size
    self.image_size = config.image_size
    self.patch_size = config.patch_size

    self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))

    self.patch_embedding = nn.Conv2d(in_channels=3,
                                     out_channels=self.embed_dim,
                                     kernel_size=self.patch_size,
                                     stride=self.patch_size)

    self.num_patches = (self.image_size // self.patch_size)**2
    self.num_positions = self.num_patches + 1

    self.position_embedding = nn.Parameter(
        torch.randn(1, self.num_positions, self.embed_dim))

_get_pos_embed

_get_pos_embed(pos_embed: Tensor, H: int, W: int)
Source code in vllm/model_executor/models/intern_vit.py
def _get_pos_embed(self, pos_embed: torch.Tensor, H: int, W: int):
    target_dtype = pos_embed.dtype
    pos_embed = pos_embed.float().reshape(
        1, self.image_size // self.patch_size,
        self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
    pos_embed = F.interpolate(pos_embed,
                              size=(H, W),
                              mode='bicubic',
                              align_corners=False)
    return pos_embed.reshape(1, -1, H * W).permute(0, 2,
                                                   1).to(target_dtype)

_get_position_embedding

_get_position_embedding(H: int, W: int) -> Tensor
Source code in vllm/model_executor/models/intern_vit.py
def _get_position_embedding(self, H: int, W: int) -> torch.Tensor:
    position_embedding = self.position_embedding
    if self.num_patches == H * W:
        return position_embedding

    return torch.cat(
        [
            position_embedding[:, :1, :],
            self._get_pos_embed(position_embedding[:, 1:, :], H, W),
        ],
        dim=1,
    )

forward

forward(pixel_values: FloatTensor) -> Tensor
Source code in vllm/model_executor/models/intern_vit.py
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
    target_dtype = self.patch_embedding.weight.dtype
    patch_embeds = self.patch_embedding(pixel_values.to(
        target_dtype))  # shape = [*, channel, width, height]
    batch_size, _, height, width = patch_embeds.shape
    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
    class_embeds = self.class_embedding.expand(batch_size, 1,
                                               -1).to(target_dtype)
    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
    position_embedding = self._get_position_embedding(height, width)
    embeddings = embeddings + position_embedding.to(target_dtype)
    return embeddings

InternVisionEncoder

Bases: Module

Source code in vllm/model_executor/models/intern_vit.py
class InternVisionEncoder(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        *,
        num_hidden_layers_override: Optional[int] = None,
        num_dummy_heads: int = 0,
        prefix: str = "",
    ):
        super().__init__()

        self.config = config

        if num_hidden_layers_override is None:
            num_hidden_layers = config.num_hidden_layers
        else:
            num_hidden_layers = num_hidden_layers_override

        self.layers = nn.ModuleList([
            InternVisionEncoderLayer(config,
                                     quant_config,
                                     num_dummy_heads=num_dummy_heads,
                                     prefix=f"{prefix}.layers.{layer_idx}")
            for layer_idx in range(num_hidden_layers)
        ])

    def forward(self, inputs_embeds: torch.Tensor):

        hidden_states = inputs_embeds
        for encoder_layer in self.layers:
            hidden_states = encoder_layer(hidden_states)

        return hidden_states

config instance-attribute

config = config

layers instance-attribute

layers = ModuleList(
    [
        InternVisionEncoderLayer(
            config,
            quant_config,
            num_dummy_heads=num_dummy_heads,
            prefix=f"{prefix}.layers.{layer_idx}",
        )
        for layer_idx in range(num_hidden_layers)
    ]
)

__init__

__init__(
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    num_dummy_heads: int = 0,
    prefix: str = "",
)
Source code in vllm/model_executor/models/intern_vit.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    num_dummy_heads: int = 0,
    prefix: str = "",
):
    super().__init__()

    self.config = config

    if num_hidden_layers_override is None:
        num_hidden_layers = config.num_hidden_layers
    else:
        num_hidden_layers = num_hidden_layers_override

    self.layers = nn.ModuleList([
        InternVisionEncoderLayer(config,
                                 quant_config,
                                 num_dummy_heads=num_dummy_heads,
                                 prefix=f"{prefix}.layers.{layer_idx}")
        for layer_idx in range(num_hidden_layers)
    ])

forward

forward(inputs_embeds: Tensor)
Source code in vllm/model_executor/models/intern_vit.py
def forward(self, inputs_embeds: torch.Tensor):

    hidden_states = inputs_embeds
    for encoder_layer in self.layers:
        hidden_states = encoder_layer(hidden_states)

    return hidden_states

InternVisionEncoderLayer

Bases: Module

Source code in vllm/model_executor/models/intern_vit.py
class InternVisionEncoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        *,
        num_dummy_heads: int = 0,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.embed_dim = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.norm_type = config.norm_type

        self.attn = self._init_attn(config,
                                    quant_config,
                                    num_dummy_heads=num_dummy_heads,
                                    prefix=f"{prefix}.attn")

        self.mlp = InternMLP(config,
                             quant_config=quant_config,
                             prefix=f"{prefix}.mlp")
        self.norm1 = NORM2FN[self.norm_type](self.embed_dim,
                                             eps=config.layer_norm_eps)
        self.norm2 = NORM2FN[self.norm_type](self.embed_dim,
                                             eps=config.layer_norm_eps)

        self.ls1 = nn.Parameter(config.initializer_factor *
                                torch.ones(self.embed_dim))
        self.ls2 = nn.Parameter(config.initializer_factor *
                                torch.ones(self.embed_dim))

    def _init_attn(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig],
        *,
        num_dummy_heads: int,
        prefix: str = "",
    ):
        # fallback to sdpa attention if tp unavailable
        tp_size = get_tensor_model_parallel_world_size()
        num_heads = config.num_attention_heads

        if (num_heads + num_dummy_heads) % tp_size == 0:
            return InternParallelAttention(config,
                                           quant_config=quant_config,
                                           num_dummy_heads=num_dummy_heads,
                                           prefix=prefix)

        return InternSdpaAttention(config, num_dummy_heads=num_dummy_heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
    ):
        hidden_states = hidden_states + self.attn(
            self.norm1(hidden_states)) * self.ls1

        hidden_states = hidden_states + self.mlp(
            self.norm2(hidden_states)) * self.ls2

        return hidden_states

attn instance-attribute

attn = _init_attn(
    config,
    quant_config,
    num_dummy_heads=num_dummy_heads,
    prefix=f"{prefix}.attn",
)

embed_dim instance-attribute

embed_dim = hidden_size

intermediate_size instance-attribute

intermediate_size = intermediate_size

ls1 instance-attribute

ls1 = Parameter(initializer_factor * ones(embed_dim))

ls2 instance-attribute

ls2 = Parameter(initializer_factor * ones(embed_dim))

mlp instance-attribute

mlp = InternMLP(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

norm1 instance-attribute

norm1 = NORM2FN[norm_type](embed_dim, eps=layer_norm_eps)

norm2 instance-attribute

norm2 = NORM2FN[norm_type](embed_dim, eps=layer_norm_eps)

norm_type instance-attribute

norm_type = norm_type

__init__

__init__(
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_dummy_heads: int = 0,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/intern_vit.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_dummy_heads: int = 0,
    prefix: str = "",
) -> None:
    super().__init__()

    self.embed_dim = config.hidden_size
    self.intermediate_size = config.intermediate_size
    self.norm_type = config.norm_type

    self.attn = self._init_attn(config,
                                quant_config,
                                num_dummy_heads=num_dummy_heads,
                                prefix=f"{prefix}.attn")

    self.mlp = InternMLP(config,
                         quant_config=quant_config,
                         prefix=f"{prefix}.mlp")
    self.norm1 = NORM2FN[self.norm_type](self.embed_dim,
                                         eps=config.layer_norm_eps)
    self.norm2 = NORM2FN[self.norm_type](self.embed_dim,
                                         eps=config.layer_norm_eps)

    self.ls1 = nn.Parameter(config.initializer_factor *
                            torch.ones(self.embed_dim))
    self.ls2 = nn.Parameter(config.initializer_factor *
                            torch.ones(self.embed_dim))

_init_attn

_init_attn(
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig],
    *,
    num_dummy_heads: int,
    prefix: str = "",
)
Source code in vllm/model_executor/models/intern_vit.py
def _init_attn(
    self,
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig],
    *,
    num_dummy_heads: int,
    prefix: str = "",
):
    # fallback to sdpa attention if tp unavailable
    tp_size = get_tensor_model_parallel_world_size()
    num_heads = config.num_attention_heads

    if (num_heads + num_dummy_heads) % tp_size == 0:
        return InternParallelAttention(config,
                                       quant_config=quant_config,
                                       num_dummy_heads=num_dummy_heads,
                                       prefix=prefix)

    return InternSdpaAttention(config, num_dummy_heads=num_dummy_heads)

forward

forward(hidden_states: Tensor)
Source code in vllm/model_executor/models/intern_vit.py
def forward(
    self,
    hidden_states: torch.Tensor,
):
    hidden_states = hidden_states + self.attn(
        self.norm1(hidden_states)) * self.ls1

    hidden_states = hidden_states + self.mlp(
        self.norm2(hidden_states)) * self.ls2

    return hidden_states

InternVisionModel

Bases: Module

Source code in vllm/model_executor/models/intern_vit.py
class InternVisionModel(nn.Module):

    packed_modules_mapping = {
        "qkv": ["qkv"],
    }

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        *,
        num_hidden_layers_override: Optional[int] = None,
        num_dummy_heads: int = 0,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config

        self.embeddings = InternVisionEmbeddings(config)
        self.encoder = InternVisionEncoder(
            config=config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers_override,
            num_dummy_heads=num_dummy_heads,
            prefix=f"{prefix}.encoder",
        )

    def get_input_embeddings(self):
        return self.embeddings

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_embeds: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        if pixel_values is None and pixel_embeds is None:
            raise ValueError(
                'You have to specify pixel_values or pixel_embeds')

        if pixel_embeds is not None:
            hidden_states = pixel_embeds
        elif pixel_values is not None:
            if pixel_values.ndim == 4:
                hidden_states = self.embeddings(pixel_values)
            else:
                raise ValueError(
                    f'wrong pixel_values size: {pixel_values.shape}')

        encoder_outputs = self.encoder(inputs_embeds=hidden_states)

        return encoder_outputs

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

embeddings instance-attribute

embeddings = InternVisionEmbeddings(config)

encoder instance-attribute

encoder = InternVisionEncoder(
    config=config,
    quant_config=quant_config,
    num_hidden_layers_override=num_hidden_layers_override,
    num_dummy_heads=num_dummy_heads,
    prefix=f"{prefix}.encoder",
)

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {'qkv': ['qkv']}

__init__

__init__(
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    num_dummy_heads: int = 0,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/intern_vit.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    num_dummy_heads: int = 0,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config

    self.embeddings = InternVisionEmbeddings(config)
    self.encoder = InternVisionEncoder(
        config=config,
        quant_config=quant_config,
        num_hidden_layers_override=num_hidden_layers_override,
        num_dummy_heads=num_dummy_heads,
        prefix=f"{prefix}.encoder",
    )

forward

forward(
    pixel_values: Optional[Tensor] = None,
    pixel_embeds: Optional[Tensor] = None,
) -> FloatTensor
Source code in vllm/model_executor/models/intern_vit.py
def forward(
    self,
    pixel_values: Optional[torch.Tensor] = None,
    pixel_embeds: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
    if pixel_values is None and pixel_embeds is None:
        raise ValueError(
            'You have to specify pixel_values or pixel_embeds')

    if pixel_embeds is not None:
        hidden_states = pixel_embeds
    elif pixel_values is not None:
        if pixel_values.ndim == 4:
            hidden_states = self.embeddings(pixel_values)
        else:
            raise ValueError(
                f'wrong pixel_values size: {pixel_values.shape}')

    encoder_outputs = self.encoder(inputs_embeds=hidden_states)

    return encoder_outputs

get_input_embeddings

get_input_embeddings()
Source code in vllm/model_executor/models/intern_vit.py
def get_input_embeddings(self):
    return self.embeddings

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/intern_vit.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        param = params_dict[name]
        weight_loader = getattr(param, "weight_loader",
                                default_weight_loader)
        weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

InternVisionPatchModel

Bases: Module

Source code in vllm/model_executor/models/intern_vit.py
class InternVisionPatchModel(nn.Module):

    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.config = config
        self.embeddings = InternVisionEmbeddings(config)

    def get_input_embeddings(self):
        return self.embeddings

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_embeds: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        if pixel_values is None and pixel_embeds is None:
            raise ValueError(
                'You have to specify pixel_values or pixel_embeds')

        if pixel_embeds is not None:
            hidden_states = pixel_embeds
        elif pixel_values is not None:
            if pixel_values.ndim == 4:
                hidden_states = self.embeddings(pixel_values)
            else:
                raise ValueError(
                    f'wrong pixel_values size: {pixel_values.shape}')

        return hidden_states

config instance-attribute

config = config

embeddings instance-attribute

embeddings = InternVisionEmbeddings(config)

__init__

__init__(config: PretrainedConfig)
Source code in vllm/model_executor/models/intern_vit.py
def __init__(self, config: PretrainedConfig):
    super().__init__()
    self.config = config
    self.embeddings = InternVisionEmbeddings(config)

forward

forward(
    pixel_values: Optional[Tensor] = None,
    pixel_embeds: Optional[Tensor] = None,
) -> FloatTensor
Source code in vllm/model_executor/models/intern_vit.py
def forward(
    self,
    pixel_values: Optional[torch.Tensor] = None,
    pixel_embeds: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
    if pixel_values is None and pixel_embeds is None:
        raise ValueError(
            'You have to specify pixel_values or pixel_embeds')

    if pixel_embeds is not None:
        hidden_states = pixel_embeds
    elif pixel_values is not None:
        if pixel_values.ndim == 4:
            hidden_states = self.embeddings(pixel_values)
        else:
            raise ValueError(
                f'wrong pixel_values size: {pixel_values.shape}')

    return hidden_states

get_input_embeddings

get_input_embeddings()
Source code in vllm/model_executor/models/intern_vit.py
def get_input_embeddings(self):
    return self.embeddings