Skip to content

vllm.model_executor.models.clip

Minimal implementation of CLIPVisionModel intended to be only used within a vision language model.

CLIPAttention

Bases: Module

Multi-headed attention from 'Attention Is All You Need' paper

Source code in vllm/model_executor/models/clip.py
class CLIPAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        config: CLIPVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                "embed_dim must be divisible by num_heads "
                f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads}).")
        self.scale = self.head_dim**-0.5

        self.qkv_proj = QKVParallelLinear(
            hidden_size=self.embed_dim,
            head_size=self.head_dim,
            total_num_heads=self.num_heads,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )

        self.out_proj = RowParallelLinear(
            input_size=self.embed_dim,
            output_size=self.embed_dim,
            quant_config=quant_config,
            prefix=f"{prefix}.out_proj",
        )

        self.tp_size = get_tensor_model_parallel_world_size()
        self.num_heads_per_partition = divide(self.num_heads, self.tp_size)

        self.attn = MultiHeadAttention(self.num_heads_per_partition,
                                       self.head_dim, self.scale)

    def forward(
        self,
        hidden_states: torch.Tensor,
    ):
        """Input shape: Batch x Time x Channel"""

        qkv_states, _ = self.qkv_proj(hidden_states)
        query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
        out = self.attn(query_states, key_states, value_states)
        attn_output, _ = self.out_proj(out)

        return attn_output, None

attn instance-attribute

attn = MultiHeadAttention(
    num_heads_per_partition, head_dim, scale
)

config instance-attribute

config = config

embed_dim instance-attribute

embed_dim = hidden_size

head_dim instance-attribute

head_dim = embed_dim // num_heads

num_heads instance-attribute

num_heads = num_attention_heads

num_heads_per_partition instance-attribute

num_heads_per_partition = divide(num_heads, tp_size)

out_proj instance-attribute

out_proj = RowParallelLinear(
    input_size=embed_dim,
    output_size=embed_dim,
    quant_config=quant_config,
    prefix=f"{prefix}.out_proj",
)

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size=embed_dim,
    head_size=head_dim,
    total_num_heads=num_heads,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

scale instance-attribute

scale = head_dim ** -0.5

tp_size instance-attribute

__init__

__init__(
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/clip.py
def __init__(
    self,
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.config = config
    self.embed_dim = config.hidden_size
    self.num_heads = config.num_attention_heads
    self.head_dim = self.embed_dim // self.num_heads
    if self.head_dim * self.num_heads != self.embed_dim:
        raise ValueError(
            "embed_dim must be divisible by num_heads "
            f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
            f" {self.num_heads}).")
    self.scale = self.head_dim**-0.5

    self.qkv_proj = QKVParallelLinear(
        hidden_size=self.embed_dim,
        head_size=self.head_dim,
        total_num_heads=self.num_heads,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )

    self.out_proj = RowParallelLinear(
        input_size=self.embed_dim,
        output_size=self.embed_dim,
        quant_config=quant_config,
        prefix=f"{prefix}.out_proj",
    )

    self.tp_size = get_tensor_model_parallel_world_size()
    self.num_heads_per_partition = divide(self.num_heads, self.tp_size)

    self.attn = MultiHeadAttention(self.num_heads_per_partition,
                                   self.head_dim, self.scale)

forward

forward(hidden_states: Tensor)

Input shape: Batch x Time x Channel

Source code in vllm/model_executor/models/clip.py
def forward(
    self,
    hidden_states: torch.Tensor,
):
    """Input shape: Batch x Time x Channel"""

    qkv_states, _ = self.qkv_proj(hidden_states)
    query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
    out = self.attn(query_states, key_states, value_states)
    attn_output, _ = self.out_proj(out)

    return attn_output, None

CLIPEncoder

Bases: Module

Transformer encoder consisting of config.num_hidden_layers self attention layers. Each layer is a [CLIPEncoderLayer].

Parameters:

Name Type Description Default
config CLIPVisionConfig

CLIPConfig

required
Source code in vllm/model_executor/models/clip.py
class CLIPEncoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self
    attention layers. Each layer is a [`CLIPEncoderLayer`].

    Args:
        config: CLIPConfig
    """

    def __init__(
        self,
        config: CLIPVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        num_hidden_layers_override: Optional[int] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config

        if num_hidden_layers_override is None:
            num_hidden_layers = config.num_hidden_layers
        else:
            num_hidden_layers = num_hidden_layers_override
        self.layers = nn.ModuleList([
            CLIPEncoderLayer(config=config,
                             quant_config=quant_config,
                             prefix=f"{prefix}.layers.{layer_idx}")
            for layer_idx in range(num_hidden_layers)
        ])

    def forward(
        self, inputs_embeds: torch.Tensor, return_all_hidden_states: bool
    ) -> Union[torch.Tensor, list[torch.Tensor]]:
        hidden_states_pool = [inputs_embeds]
        hidden_states = inputs_embeds

        for encoder_layer in self.layers:
            hidden_states = encoder_layer(hidden_states)
            if return_all_hidden_states:
                hidden_states_pool.append(hidden_states)
        # If we have multiple feature sample layers, we return all hidden
        # states in order and grab the ones we need by index.
        if return_all_hidden_states:
            return hidden_states_pool
        return hidden_states

config instance-attribute

config = config

layers instance-attribute

layers = ModuleList(
    [
        CLIPEncoderLayer(
            config=config,
            quant_config=quant_config,
            prefix=f"{prefix}.layers.{layer_idx}",
        )
        for layer_idx in range(num_hidden_layers)
    ]
)

__init__

__init__(
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    num_hidden_layers_override: Optional[int] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
def __init__(
    self,
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    num_hidden_layers_override: Optional[int] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config

    if num_hidden_layers_override is None:
        num_hidden_layers = config.num_hidden_layers
    else:
        num_hidden_layers = num_hidden_layers_override
    self.layers = nn.ModuleList([
        CLIPEncoderLayer(config=config,
                         quant_config=quant_config,
                         prefix=f"{prefix}.layers.{layer_idx}")
        for layer_idx in range(num_hidden_layers)
    ])

forward

forward(
    inputs_embeds: Tensor, return_all_hidden_states: bool
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/clip.py
def forward(
    self, inputs_embeds: torch.Tensor, return_all_hidden_states: bool
) -> Union[torch.Tensor, list[torch.Tensor]]:
    hidden_states_pool = [inputs_embeds]
    hidden_states = inputs_embeds

    for encoder_layer in self.layers:
        hidden_states = encoder_layer(hidden_states)
        if return_all_hidden_states:
            hidden_states_pool.append(hidden_states)
    # If we have multiple feature sample layers, we return all hidden
    # states in order and grab the ones we need by index.
    if return_all_hidden_states:
        return hidden_states_pool
    return hidden_states

CLIPEncoderInfo

Bases: VisionEncoderInfo[CLIPVisionConfig]

Source code in vllm/model_executor/models/clip.py
class CLIPEncoderInfo(VisionEncoderInfo[CLIPVisionConfig]):

    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
    ) -> int:
        return self.get_patch_grid_length()**2 + 1

    def get_image_size(self) -> int:
        return self.vision_config.image_size

    def get_patch_size(self) -> int:
        return self.vision_config.patch_size

    def get_patch_grid_length(self) -> int:
        image_size, patch_size = self.get_image_size(), self.get_patch_size()
        assert image_size % patch_size == 0
        return image_size // patch_size

get_image_size

get_image_size() -> int
Source code in vllm/model_executor/models/clip.py
def get_image_size(self) -> int:
    return self.vision_config.image_size

get_num_image_tokens

get_num_image_tokens(
    *, image_width: int, image_height: int
) -> int
Source code in vllm/model_executor/models/clip.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    return self.get_patch_grid_length()**2 + 1

get_patch_grid_length

get_patch_grid_length() -> int
Source code in vllm/model_executor/models/clip.py
def get_patch_grid_length(self) -> int:
    image_size, patch_size = self.get_image_size(), self.get_patch_size()
    assert image_size % patch_size == 0
    return image_size // patch_size

get_patch_size

get_patch_size() -> int
Source code in vllm/model_executor/models/clip.py
def get_patch_size(self) -> int:
    return self.vision_config.patch_size

CLIPEncoderLayer

Bases: Module

Source code in vllm/model_executor/models/clip.py
class CLIPEncoderLayer(nn.Module):

    def __init__(
        self,
        config: CLIPVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.self_attn = CLIPAttention(
            config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
        )
        self.layer_norm1 = nn.LayerNorm(config.hidden_size,
                                        eps=config.layer_norm_eps)
        self.mlp = CLIPMLP(config,
                           quant_config=quant_config,
                           prefix=f"{prefix}.mlp")
        self.layer_norm2 = nn.LayerNorm(config.hidden_size,
                                        eps=config.layer_norm_eps)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:

        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, _ = self.self_attn(hidden_states=hidden_states)
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states

layer_norm1 instance-attribute

layer_norm1 = LayerNorm(hidden_size, eps=layer_norm_eps)

layer_norm2 instance-attribute

layer_norm2 = LayerNorm(hidden_size, eps=layer_norm_eps)

mlp instance-attribute

mlp = CLIPMLP(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

self_attn instance-attribute

self_attn = CLIPAttention(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
)

__init__

__init__(
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
def __init__(
    self,
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.self_attn = CLIPAttention(
        config,
        quant_config=quant_config,
        prefix=f"{prefix}.self_attn",
    )
    self.layer_norm1 = nn.LayerNorm(config.hidden_size,
                                    eps=config.layer_norm_eps)
    self.mlp = CLIPMLP(config,
                       quant_config=quant_config,
                       prefix=f"{prefix}.mlp")
    self.layer_norm2 = nn.LayerNorm(config.hidden_size,
                                    eps=config.layer_norm_eps)

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/clip.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:

    residual = hidden_states

    hidden_states = self.layer_norm1(hidden_states)
    hidden_states, _ = self.self_attn(hidden_states=hidden_states)
    hidden_states = residual + hidden_states

    residual = hidden_states
    hidden_states = self.layer_norm2(hidden_states)
    hidden_states = self.mlp(hidden_states)
    hidden_states = residual + hidden_states

    return hidden_states

CLIPMLP

Bases: Module

Source code in vllm/model_executor/models/clip.py
class CLIPMLP(nn.Module):

    def __init__(
        self,
        config: CLIPVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.config = config
        self.activation_fn = get_act_fn(config.hidden_act)
        self.fc1 = ColumnParallelLinear(config.hidden_size,
                                        config.intermediate_size,
                                        bias=True,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.fc1")
        self.fc2 = RowParallelLinear(config.intermediate_size,
                                     config.hidden_size,
                                     bias=True,
                                     quant_config=quant_config,
                                     prefix=f"{prefix}.fc2")

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states, _ = self.fc2(hidden_states)

        return hidden_states

activation_fn instance-attribute

activation_fn = get_act_fn(hidden_act)

config instance-attribute

config = config

fc1 instance-attribute

fc1 = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.fc1",
)

fc2 instance-attribute

fc2 = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.fc2",
)

__init__

__init__(
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
def __init__(
    self,
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.config = config
    self.activation_fn = get_act_fn(config.hidden_act)
    self.fc1 = ColumnParallelLinear(config.hidden_size,
                                    config.intermediate_size,
                                    bias=True,
                                    quant_config=quant_config,
                                    prefix=f"{prefix}.fc1")
    self.fc2 = RowParallelLinear(config.intermediate_size,
                                 config.hidden_size,
                                 bias=True,
                                 quant_config=quant_config,
                                 prefix=f"{prefix}.fc2")

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/clip.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    hidden_states, _ = self.fc1(hidden_states)
    hidden_states = self.activation_fn(hidden_states)
    hidden_states, _ = self.fc2(hidden_states)

    return hidden_states

CLIPVisionEmbeddings

Bases: Module

Source code in vllm/model_executor/models/clip.py
class CLIPVisionEmbeddings(nn.Module):

    def __init__(self, config: CLIPVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size
        assert self.image_size % self.patch_size == 0

        self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            bias=False,
        )

        self.num_patches = (self.image_size // self.patch_size)**2
        self.num_positions = self.num_patches + 1
        self.position_embedding = nn.Embedding(self.num_positions,
                                               self.embed_dim)
        self.register_buffer("position_ids",
                             torch.arange(self.num_positions).expand((1, -1)),
                             persistent=False)

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        batch_size = pixel_values.shape[0]
        target_dtype = self.patch_embedding.weight.dtype
        patch_embeds = self.patch_embedding(pixel_values.to(
            dtype=target_dtype))  # shape = [*, width, grid, grid]
        patch_embeds = patch_embeds.flatten(2).transpose(1, 2)

        class_embeds = self.class_embedding.expand(batch_size, 1, -1)
        embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
        embeddings = embeddings + self.position_embedding(self.position_ids)

        return embeddings

class_embedding instance-attribute

class_embedding = Parameter(randn(embed_dim))

config instance-attribute

config = config

embed_dim instance-attribute

embed_dim = hidden_size

image_size instance-attribute

image_size = image_size

num_patches instance-attribute

num_patches = image_size // patch_size ** 2

num_positions instance-attribute

num_positions = num_patches + 1

patch_embedding instance-attribute

patch_embedding = Conv2d(
    in_channels=num_channels,
    out_channels=embed_dim,
    kernel_size=patch_size,
    stride=patch_size,
    bias=False,
)

patch_size instance-attribute

patch_size = patch_size

position_embedding instance-attribute

position_embedding = Embedding(num_positions, embed_dim)

__init__

__init__(config: CLIPVisionConfig)
Source code in vllm/model_executor/models/clip.py
def __init__(self, config: CLIPVisionConfig):
    super().__init__()
    self.config = config
    self.embed_dim = config.hidden_size
    self.image_size = config.image_size
    self.patch_size = config.patch_size
    assert self.image_size % self.patch_size == 0

    self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))

    self.patch_embedding = nn.Conv2d(
        in_channels=config.num_channels,
        out_channels=self.embed_dim,
        kernel_size=self.patch_size,
        stride=self.patch_size,
        bias=False,
    )

    self.num_patches = (self.image_size // self.patch_size)**2
    self.num_positions = self.num_patches + 1
    self.position_embedding = nn.Embedding(self.num_positions,
                                           self.embed_dim)
    self.register_buffer("position_ids",
                         torch.arange(self.num_positions).expand((1, -1)),
                         persistent=False)

forward

forward(pixel_values: Tensor) -> Tensor
Source code in vllm/model_executor/models/clip.py
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
    batch_size = pixel_values.shape[0]
    target_dtype = self.patch_embedding.weight.dtype
    patch_embeds = self.patch_embedding(pixel_values.to(
        dtype=target_dtype))  # shape = [*, width, grid, grid]
    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)

    class_embeds = self.class_embedding.expand(batch_size, 1, -1)
    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
    embeddings = embeddings + self.position_embedding(self.position_ids)

    return embeddings

CLIPVisionModel

Bases: Module, SupportsQuant

Source code in vllm/model_executor/models/clip.py
class CLIPVisionModel(nn.Module, SupportsQuant):
    config_class = CLIPVisionConfig
    main_input_name = "pixel_values"
    packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}

    def __init__(
        self,
        config: CLIPVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        *,
        num_hidden_layers_override: Optional[int] = None,
        require_post_norm: Optional[bool] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.vision_model = CLIPVisionTransformer(
            config=config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers_override,
            require_post_norm=require_post_norm,
            prefix=f"{prefix}.vision_model")

    def forward(
        self,
        pixel_values: torch.Tensor,
        feature_sample_layers: Optional[list[int]] = None,
    ) -> torch.Tensor:
        return self.vision_model(pixel_values, feature_sample_layers)

    @property
    def device(self):
        return next(self.parameters()).device

    # (TODO) Add prefix argument for filtering out weights to be loaded
    #        ref: https://github.com/vllm-project/vllm/pull/7186#discussion_r1734163986
    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        layer_count = len(self.vision_model.encoder.layers)

        for name, loaded_weight in weights:
            # post_layernorm is not needed in CLIPVisionModel
            if (name.startswith("vision_model.post_layernorm")
                    and self.vision_model.post_layernorm is None):
                continue

            # omit layers when num_hidden_layers_override is set
            if name.startswith("vision_model.encoder.layers"):
                layer_idx = int(name.split(".")[3])
                if layer_idx >= layer_count:
                    continue

            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config_class class-attribute instance-attribute

config_class = CLIPVisionConfig

device property

device

main_input_name class-attribute instance-attribute

main_input_name = 'pixel_values'

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"]
}

vision_model instance-attribute

vision_model = CLIPVisionTransformer(
    config=config,
    quant_config=quant_config,
    num_hidden_layers_override=num_hidden_layers_override,
    require_post_norm=require_post_norm,
    prefix=f"{prefix}.vision_model",
)

__init__

__init__(
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
def __init__(
    self,
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.vision_model = CLIPVisionTransformer(
        config=config,
        quant_config=quant_config,
        num_hidden_layers_override=num_hidden_layers_override,
        require_post_norm=require_post_norm,
        prefix=f"{prefix}.vision_model")

forward

forward(
    pixel_values: Tensor,
    feature_sample_layers: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/clip.py
def forward(
    self,
    pixel_values: torch.Tensor,
    feature_sample_layers: Optional[list[int]] = None,
) -> torch.Tensor:
    return self.vision_model(pixel_values, feature_sample_layers)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/clip.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    layer_count = len(self.vision_model.encoder.layers)

    for name, loaded_weight in weights:
        # post_layernorm is not needed in CLIPVisionModel
        if (name.startswith("vision_model.post_layernorm")
                and self.vision_model.post_layernorm is None):
            continue

        # omit layers when num_hidden_layers_override is set
        if name.startswith("vision_model.encoder.layers"):
            layer_idx = int(name.split(".")[3])
            if layer_idx >= layer_count:
                continue

        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

CLIPVisionTransformer

Bases: Module

Source code in vllm/model_executor/models/clip.py
class CLIPVisionTransformer(nn.Module):

    def __init__(
        self,
        config: CLIPVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        *,
        num_hidden_layers_override: Optional[int] = None,
        require_post_norm: Optional[bool] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = CLIPVisionEmbeddings(config)

        # NOTE: This typo of "layrnorm" is not fixed on purpose to match
        # the original transformers code and name of the model weights.
        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

        self.encoder = CLIPEncoder(
            config=config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers_override,
            prefix=f"{prefix}.encoder",
        )

        num_hidden_layers = config.num_hidden_layers
        if len(self.encoder.layers) > config.num_hidden_layers:
            raise ValueError(
                f"The original encoder only has {num_hidden_layers} "
                f"layers, but you requested {len(self.encoder.layers)} layers."
            )

        # If possible, skip post_layernorm to conserve memory
        if require_post_norm is None:
            require_post_norm = len(self.encoder.layers) == num_hidden_layers

        if require_post_norm:
            self.post_layernorm = nn.LayerNorm(embed_dim,
                                               eps=config.layer_norm_eps)
        else:
            self.post_layernorm = None

    def forward(
        self,
        pixel_values: torch.Tensor,
        feature_sample_layers: Optional[list[int]] = None,
    ) -> torch.Tensor:

        hidden_states = self.embeddings(pixel_values)
        hidden_states = self.pre_layrnorm(hidden_states)

        return_all_hidden_states = feature_sample_layers is not None

        # Produces either the last layer output or all of the hidden states,
        # depending on if we have feature_sample_layers or not
        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            return_all_hidden_states=return_all_hidden_states)

        # Handle post-norm (if applicable) and stacks feature layers if needed
        encoder_outputs = resolve_visual_encoder_outputs(
            encoder_outputs, feature_sample_layers, self.post_layernorm,
            self.config.num_hidden_layers)

        return encoder_outputs

config instance-attribute

config = config

embeddings instance-attribute

embeddings = CLIPVisionEmbeddings(config)

encoder instance-attribute

encoder = CLIPEncoder(
    config=config,
    quant_config=quant_config,
    num_hidden_layers_override=num_hidden_layers_override,
    prefix=f"{prefix}.encoder",
)

post_layernorm instance-attribute

post_layernorm = LayerNorm(embed_dim, eps=layer_norm_eps)

pre_layrnorm instance-attribute

pre_layrnorm = LayerNorm(embed_dim, eps=layer_norm_eps)

__init__

__init__(
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
def __init__(
    self,
    config: CLIPVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    embed_dim = config.hidden_size

    self.embeddings = CLIPVisionEmbeddings(config)

    # NOTE: This typo of "layrnorm" is not fixed on purpose to match
    # the original transformers code and name of the model weights.
    self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

    self.encoder = CLIPEncoder(
        config=config,
        quant_config=quant_config,
        num_hidden_layers_override=num_hidden_layers_override,
        prefix=f"{prefix}.encoder",
    )

    num_hidden_layers = config.num_hidden_layers
    if len(self.encoder.layers) > config.num_hidden_layers:
        raise ValueError(
            f"The original encoder only has {num_hidden_layers} "
            f"layers, but you requested {len(self.encoder.layers)} layers."
        )

    # If possible, skip post_layernorm to conserve memory
    if require_post_norm is None:
        require_post_norm = len(self.encoder.layers) == num_hidden_layers

    if require_post_norm:
        self.post_layernorm = nn.LayerNorm(embed_dim,
                                           eps=config.layer_norm_eps)
    else:
        self.post_layernorm = None

forward

forward(
    pixel_values: Tensor,
    feature_sample_layers: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/clip.py
def forward(
    self,
    pixel_values: torch.Tensor,
    feature_sample_layers: Optional[list[int]] = None,
) -> torch.Tensor:

    hidden_states = self.embeddings(pixel_values)
    hidden_states = self.pre_layrnorm(hidden_states)

    return_all_hidden_states = feature_sample_layers is not None

    # Produces either the last layer output or all of the hidden states,
    # depending on if we have feature_sample_layers or not
    encoder_outputs = self.encoder(
        inputs_embeds=hidden_states,
        return_all_hidden_states=return_all_hidden_states)

    # Handle post-norm (if applicable) and stacks feature layers if needed
    encoder_outputs = resolve_visual_encoder_outputs(
        encoder_outputs, feature_sample_layers, self.post_layernorm,
        self.config.num_hidden_layers)

    return encoder_outputs