Skip to content

vllm.model_executor.models.mimo

Inference-only MiMo model compatible with HuggingFace weights.

logger module-attribute

logger = init_logger(__name__)

MiMoForCausalLM

Bases: Qwen2ForCausalLM, Module

Source code in vllm/model_executor/models/mimo.py
class MiMoForCausalLM(Qwen2ForCausalLM, nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        nn.Module.__init__(self)
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        self.lora_config = lora_config

        self.quant_config = quant_config

        self.model = MiMoModel(vllm_config=vllm_config,
                               prefix=maybe_prefix(prefix, "model"))

        if get_pp_group().is_last_rank:
            if config.tie_word_embeddings:
                self.lm_head = self.model.embed_tokens
            else:
                self.lm_head = ParallelLMHead(config.vocab_size,
                                              config.hidden_size,
                                              quant_config=quant_config,
                                              prefix=maybe_prefix(
                                                  prefix, "lm_head"))
        else:
            self.lm_head = PPMissingLayer()

        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.sampler = get_sampler()

        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        hidden_states = self.model.norm(hidden_states)
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

config instance-attribute

config = config

lm_head instance-attribute

lm_head = embed_tokens

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

lora_config instance-attribute

lora_config = lora_config

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = MiMoModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

quant_config instance-attribute

quant_config = quant_config

sampler instance-attribute

sampler = get_sampler()

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/mimo.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    nn.Module.__init__(self)
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config

    self.config = config
    self.lora_config = lora_config

    self.quant_config = quant_config

    self.model = MiMoModel(vllm_config=vllm_config,
                           prefix=maybe_prefix(prefix, "model"))

    if get_pp_group().is_last_rank:
        if config.tie_word_embeddings:
            self.lm_head = self.model.embed_tokens
        else:
            self.lm_head = ParallelLMHead(config.vocab_size,
                                          config.hidden_size,
                                          quant_config=quant_config,
                                          prefix=maybe_prefix(
                                              prefix, "lm_head"))
    else:
        self.lm_head = PPMissingLayer()

    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.sampler = get_sampler()

    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/mimo.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    hidden_states = self.model.norm(hidden_states)
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

MiMoModel

Bases: Qwen2Model

Source code in vllm/model_executor/models/mimo.py
@support_torch_compile(
    dynamic_arg_dims={
        "input_ids": 0,
        "positions": -1,
        "intermediate_tensors": 0,
        "inputs_embeds": 0,
    })
class MiMoModel(Qwen2Model):

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]
        for layer in self.layers[self.start_layer:self.end_layer]:
            hidden_states, residual = layer(
                positions,
                hidden_states,
                residual,
            )
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })
        hidden_states = hidden_states + residual
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "mtp_layers" in name:
                continue
            if "rotary_emb.inv_freq" in name:
                continue
            if (self.quant_config is not None and
                (scale_name := self.quant_config.get_cache_scale(name))):
                # Loading kv cache quantization scales
                param = params_dict[scale_name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
                                 loaded_weight[0])
                weight_loader(param, loaded_weight)
                loaded_params.add(scale_name)
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/mimo.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]
    for layer in self.layers[self.start_layer:self.end_layer]:
        hidden_states, residual = layer(
            positions,
            hidden_states,
            residual,
        )
    if not get_pp_group().is_last_rank:
        return IntermediateTensors({
            "hidden_states": hidden_states,
            "residual": residual
        })
    hidden_states = hidden_states + residual
    return hidden_states

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/mimo.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
    ]
    params_dict = dict(self.named_parameters(remove_duplicate=False))
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "mtp_layers" in name:
            continue
        if "rotary_emb.inv_freq" in name:
            continue
        if (self.quant_config is not None and
            (scale_name := self.quant_config.get_cache_scale(name))):
            # Loading kv cache quantization scales
            param = params_dict[scale_name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
                             loaded_weight[0])
            weight_loader(param, loaded_weight)
            loaded_params.add(scale_name)
            continue
        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            # Remapping the name of FP8 kv-scale.
            name = maybe_remap_kv_scale_name(name, params_dict)
            if name is None:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params