vllm.model_executor.models.qwen
Inference-only QWen model compatible with HuggingFace weights.
QWenAttention
¶
Bases: Module
Source code in vllm/model_executor/models/qwen.py
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
c_attn
instance-attribute
¶
c_attn = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
bias=True,
quant_config=quant_config,
)
c_proj
instance-attribute
¶
c_proj = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
)
rotary_emb
instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
__init__
¶
__init__(
hidden_size: int,
num_heads: int,
max_position_embeddings: int,
rope_theta: float = 10000,
rope_scaling: Optional[dict[str, Any]] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/qwen.py
forward
¶
Source code in vllm/model_executor/models/qwen.py
QWenBaseModel
¶
Bases: Module
Source code in vllm/model_executor/models/qwen.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
lm_head
instance-attribute
¶
lm_head = ParallelLMHead(
vocab_size, hidden_size, quant_config=quant_config
)
make_empty_intermediate_tensors
instance-attribute
¶
transformer
instance-attribute
¶
transformer = transformer_type(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__
¶
__init__(
*,
vllm_config: VllmConfig,
prefix: str = "",
transformer_type: type[QWenModel] = QWenModel,
) -> None
Source code in vllm/model_executor/models/qwen.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
load_weights
¶
Source code in vllm/model_executor/models/qwen.py
QWenBlock
¶
Bases: Module
Source code in vllm/model_executor/models/qwen.py
attn
instance-attribute
¶
attn = QWenAttention(
hidden_size,
num_attention_heads,
max_position_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
mlp
instance-attribute
¶
mlp = QWenMLP(
hidden_size,
intermediate_size // 2,
quant_config=quant_config,
)
__init__
¶
__init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/qwen.py
forward
¶
forward(
positions: Tensor,
hidden_states: Tensor,
residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/qwen.py
QWenLMHeadModel
¶
Bases: QWenBaseModel
, SupportsPP
, SupportsLoRA
Source code in vllm/model_executor/models/qwen.py
packed_modules_mapping
class-attribute
instance-attribute
¶
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/qwen.py
QWenMLP
¶
Bases: Module
MLP for the language component of the Qwen model, which contains a MergedColumnParallelLinear merging 2 outputs via silu activation.
Source code in vllm/model_executor/models/qwen.py
c_proj
instance-attribute
¶
c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
)
gate_up_proj
instance-attribute
¶
gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
__init__
¶
__init__(
hidden_size: int,
intermediate_size: int,
hidden_act: str = "silu",
quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/qwen.py
QWenModel
¶
Bases: Module
Source code in vllm/model_executor/models/qwen.py
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], hidden_size
)
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen.py
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]