vllm.model_executor.models.registry
Whenever you add an architecture to this page, please also update
tests/models/registry.py
with example HuggingFace models for it.
ModelRegistry
module-attribute
¶
ModelRegistry = _ModelRegistry(
{
model_arch: _LazyRegisteredModel(
module_name=f"vllm.model_executor.models.{mod_relname}",
class_name=cls_name,
)
for (model_arch, (mod_relname, cls_name)) in items()
}
)
_CROSS_ENCODER_MODELS
module-attribute
¶
_CROSS_ENCODER_MODELS = {
"BertForSequenceClassification": (
"bert",
"BertForSequenceClassification",
),
"RobertaForSequenceClassification": (
"roberta",
"RobertaForSequenceClassification",
),
"XLMRobertaForSequenceClassification": (
"roberta",
"RobertaForSequenceClassification",
),
"ModernBertForSequenceClassification": (
"modernbert",
"ModernBertForSequenceClassification",
),
"Qwen2ForSequenceClassification": (
"qwen2",
"Qwen2ForSequenceClassification",
),
"Qwen3ForSequenceClassification": (
"qwen3",
"Qwen3ForSequenceClassification",
),
}
_EMBEDDING_MODELS
module-attribute
¶
_EMBEDDING_MODELS = {
"BertModel": ("bert", "BertEmbeddingModel"),
"DeciLMForCausalLM": (
"nemotron_nas",
"DeciLMForCausalLM",
),
"Gemma2Model": ("gemma2", "Gemma2ForCausalLM"),
"GlmForCausalLM": ("glm", "GlmForCausalLM"),
"GPT2ForSequenceClassification": (
"gpt2",
"GPT2ForSequenceClassification",
),
"GritLM": ("gritlm", "GritLM"),
"GteModel": ("bert_with_rope", "SnowflakeGteNewModel"),
"GteNewModel": ("bert_with_rope", "GteNewModel"),
"InternLM2ForRewardModel": (
"internlm2",
"InternLM2ForRewardModel",
),
"JambaForSequenceClassification": (
"jamba",
"JambaForSequenceClassification",
),
"LlamaModel": ("llama", "LlamaForCausalLM"),
None: {
k: (mod, arch)
for (k, (mod, arch)) in items()
if arch == "LlamaForCausalLM"
},
"MistralModel": ("llama", "LlamaForCausalLM"),
"ModernBertModel": ("modernbert", "ModernBertModel"),
"NomicBertModel": ("bert_with_rope", "NomicBertModel"),
"Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),
"Qwen2Model": ("qwen2", "Qwen2ForCausalLM"),
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
"Qwen2ForRewardModel": (
"qwen2_rm",
"Qwen2ForRewardModel",
),
"Qwen2ForProcessRewardModel": (
"qwen2_rm",
"Qwen2ForProcessRewardModel",
),
"RobertaForMaskedLM": (
"roberta",
"RobertaEmbeddingModel",
),
"RobertaModel": ("roberta", "RobertaEmbeddingModel"),
"TeleChat2ForCausalLM": (
"telechat2",
"TeleChat2ForCausalLM",
),
"XLMRobertaModel": ("roberta", "RobertaEmbeddingModel"),
"LlavaNextForConditionalGeneration": (
"llava_next",
"LlavaNextForConditionalGeneration",
),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"Qwen2VLForConditionalGeneration": (
"qwen2_vl",
"Qwen2VLForConditionalGeneration",
),
"PrithviGeoSpatialMAE": (
"prithvi_geospatial_mae",
"PrithviGeoSpatialMAE",
),
}
_MULTIMODAL_MODELS
module-attribute
¶
_MULTIMODAL_MODELS = {
"AriaForConditionalGeneration": (
"aria",
"AriaForConditionalGeneration",
),
"AyaVisionForConditionalGeneration": (
"aya_vision",
"AyaVisionForConditionalGeneration",
),
"Blip2ForConditionalGeneration": (
"blip2",
"Blip2ForConditionalGeneration",
),
"ChameleonForConditionalGeneration": (
"chameleon",
"ChameleonForConditionalGeneration",
),
"DeepseekVLV2ForCausalLM": (
"deepseek_vl2",
"DeepseekVLV2ForCausalLM",
),
"FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"),
"Gemma3ForConditionalGeneration": (
"gemma3_mm",
"Gemma3ForConditionalGeneration",
),
"GLM4VForCausalLM": ("glm4v", "GLM4VForCausalLM"),
"Glm4vForConditionalGeneration": (
"glm4_1v",
"Glm4vForConditionalGeneration",
),
"GraniteSpeechForConditionalGeneration": (
"granite_speech",
"GraniteSpeechForConditionalGeneration",
),
"H2OVLChatModel": ("h2ovl", "H2OVLChatModel"),
"InternVLChatModel": ("internvl", "InternVLChatModel"),
"Idefics3ForConditionalGeneration": (
"idefics3",
"Idefics3ForConditionalGeneration",
),
"SmolVLMForConditionalGeneration": (
"smolvlm",
"SmolVLMForConditionalGeneration",
),
"KeyeForConditionalGeneration": (
"keye",
"KeyeForConditionalGeneration",
),
"KimiVLForConditionalGeneration": (
"kimi_vl",
"KimiVLForConditionalGeneration",
),
"LlavaForConditionalGeneration": (
"llava",
"LlavaForConditionalGeneration",
),
"LlavaNextForConditionalGeneration": (
"llava_next",
"LlavaNextForConditionalGeneration",
),
"LlavaNextVideoForConditionalGeneration": (
"llava_next_video",
"LlavaNextVideoForConditionalGeneration",
),
"LlavaOnevisionForConditionalGeneration": (
"llava_onevision",
"LlavaOnevisionForConditionalGeneration",
),
"MantisForConditionalGeneration": (
"llava",
"MantisForConditionalGeneration",
),
"MiniMaxVL01ForConditionalGeneration": (
"minimax_vl_01",
"MiniMaxVL01ForConditionalGeneration",
),
"MiniCPMO": ("minicpmo", "MiniCPMO"),
"MiniCPMV": ("minicpmv", "MiniCPMV"),
"Mistral3ForConditionalGeneration": (
"mistral3",
"Mistral3ForConditionalGeneration",
),
"MolmoForCausalLM": ("molmo", "MolmoForCausalLM"),
"NVLM_D": ("nvlm_d", "NVLM_D_Model"),
"Ovis": ("ovis", "Ovis"),
"PaliGemmaForConditionalGeneration": (
"paligemma",
"PaliGemmaForConditionalGeneration",
),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"PixtralForConditionalGeneration": (
"pixtral",
"PixtralForConditionalGeneration",
),
"QwenVLForConditionalGeneration": (
"qwen_vl",
"QwenVLForConditionalGeneration",
),
"Qwen2VLForConditionalGeneration": (
"qwen2_vl",
"Qwen2VLForConditionalGeneration",
),
"Qwen2_5_VLForConditionalGeneration": (
"qwen2_5_vl",
"Qwen2_5_VLForConditionalGeneration",
),
"Qwen2AudioForConditionalGeneration": (
"qwen2_audio",
"Qwen2AudioForConditionalGeneration",
),
"Qwen2_5OmniModel": (
"qwen2_5_omni_thinker",
"Qwen2_5OmniThinkerForConditionalGeneration",
),
"Qwen2_5OmniForConditionalGeneration": (
"qwen2_5_omni_thinker",
"Qwen2_5OmniThinkerForConditionalGeneration",
),
"UltravoxModel": ("ultravox", "UltravoxModel"),
"Phi4MMForCausalLM": ("phi4mm", "Phi4MMForCausalLM"),
"TarsierForConditionalGeneration": (
"tarsier",
"TarsierForConditionalGeneration",
),
"Tarsier2ForConditionalGeneration": (
"qwen2_vl",
"Tarsier2ForConditionalGeneration",
),
"Florence2ForConditionalGeneration": (
"florence2",
"Florence2ForConditionalGeneration",
),
"MllamaForConditionalGeneration": (
"mllama",
"MllamaForConditionalGeneration",
),
"Llama4ForConditionalGeneration": (
"mllama4",
"Llama4ForConditionalGeneration",
),
"SkyworkR1VChatModel": (
"skyworkr1v",
"SkyworkR1VChatModel",
),
"WhisperForConditionalGeneration": (
"whisper",
"WhisperForConditionalGeneration",
),
}
_SPECULATIVE_DECODING_MODELS
module-attribute
¶
_SPECULATIVE_DECODING_MODELS = {
"MiMoMTPModel": ("mimo_mtp", "MiMoMTP"),
"EAGLEModel": ("eagle", "EAGLE"),
"EagleLlamaForCausalLM": (
"llama_eagle",
"EagleLlamaForCausalLM",
),
"EagleMiniCPMForCausalLM": (
"minicpm_eagle",
"EagleMiniCPMForCausalLM",
),
"Eagle3LlamaForCausalLM": (
"llama_eagle3",
"Eagle3LlamaForCausalLM",
),
"DeepSeekMTPModel": ("deepseek_mtp", "DeepSeekMTP"),
"MedusaModel": ("medusa", "Medusa"),
"MLPSpeculatorPreTrainedModel": (
"mlp_speculator",
"MLPSpeculator",
),
}
_SUBPROCESS_COMMAND
module-attribute
¶
_SUBPROCESS_COMMAND = [
executable,
"-m",
"vllm.model_executor.models.registry",
]
_TEXT_GENERATION_MODELS
module-attribute
¶
_TEXT_GENERATION_MODELS = {
"AquilaModel": ("llama", "LlamaForCausalLM"),
"AquilaForCausalLM": ("llama", "LlamaForCausalLM"),
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
"MiniMaxText01ForCausalLM": (
"minimax_text_01",
"MiniMaxText01ForCausalLM",
),
"MiniMaxM1ForCausalLM": (
"minimax_text_01",
"MiniMaxText01ForCausalLM",
),
"BaiChuanForCausalLM": (
"baichuan",
"BaiChuanForCausalLM",
),
"BaichuanForCausalLM": (
"baichuan",
"BaichuanForCausalLM",
),
"BambaForCausalLM": ("bamba", "BambaForCausalLM"),
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
"ChatGLMForConditionalGeneration": (
"chatglm",
"ChatGLMForCausalLM",
),
"CohereForCausalLM": ("commandr", "CohereForCausalLM"),
"Cohere2ForCausalLM": ("commandr", "CohereForCausalLM"),
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
"DeciLMForCausalLM": (
"nemotron_nas",
"DeciLMForCausalLM",
),
"DeepseekForCausalLM": (
"deepseek",
"DeepseekForCausalLM",
),
"DeepseekV2ForCausalLM": (
"deepseek_v2",
"DeepseekV2ForCausalLM",
),
"DeepseekV3ForCausalLM": (
"deepseek_v2",
"DeepseekV3ForCausalLM",
),
"Dots1ForCausalLM": ("dots1", "Dots1ForCausalLM"),
"Ernie4_5_ForCausalLM": (
"ernie45",
"Ernie4_5_ForCausalLM",
),
"Ernie4_5_MoeForCausalLM": (
"ernie45_moe",
"Ernie4_5_MoeForCausalLM",
),
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
"Fairseq2LlamaForCausalLM": (
"fairseq2_llama",
"Fairseq2LlamaForCausalLM",
),
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
"Gemma3ForCausalLM": ("gemma3", "Gemma3ForCausalLM"),
"Gemma3nForConditionalGeneration": (
"gemma3n",
"Gemma3nForConditionalGeneration",
),
"GlmForCausalLM": ("glm", "GlmForCausalLM"),
"Glm4ForCausalLM": ("glm4", "Glm4ForCausalLM"),
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
"GPTBigCodeForCausalLM": (
"gpt_bigcode",
"GPTBigCodeForCausalLM",
),
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
"GPTNeoXForCausalLM": (
"gpt_neox",
"GPTNeoXForCausalLM",
),
"GraniteForCausalLM": ("granite", "GraniteForCausalLM"),
"GraniteMoeForCausalLM": (
"granitemoe",
"GraniteMoeForCausalLM",
),
"GraniteMoeHybridForCausalLM": (
"granitemoehybrid",
"GraniteMoeHybridForCausalLM",
),
"GraniteMoeSharedForCausalLM": (
"granitemoeshared",
"GraniteMoeSharedForCausalLM",
),
"GritLM": ("gritlm", "GritLM"),
"Grok1ModelForCausalLM": ("grok1", "Grok1ForCausalLM"),
"HunYuanMoEV1ForCausalLM": (
"hunyuan_v1_moe",
"HunYuanMoEV1ForCausalLM",
),
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
"InternLM2ForCausalLM": (
"internlm2",
"InternLM2ForCausalLM",
),
"InternLM2VEForCausalLM": (
"internlm2_ve",
"InternLM2VEForCausalLM",
),
"InternLM3ForCausalLM": ("llama", "LlamaForCausalLM"),
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
"JambaForCausalLM": ("jamba", "JambaForCausalLM"),
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"MambaForCausalLM": ("mamba", "MambaForCausalLM"),
"FalconMambaForCausalLM": ("mamba", "MambaForCausalLM"),
"FalconH1ForCausalLM": (
"falcon_h1",
"FalconH1ForCausalLM",
),
"Mamba2ForCausalLM": ("mamba2", "Mamba2ForCausalLM"),
"MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"),
"MiniCPM3ForCausalLM": (
"minicpm3",
"MiniCPM3ForCausalLM",
),
"MistralForCausalLM": ("llama", "LlamaForCausalLM"),
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
"QuantMixtralForCausalLM": (
"mixtral_quant",
"MixtralForCausalLM",
),
"MptForCausalLM": ("mpt", "MPTForCausalLM"),
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
"MiMoForCausalLM": ("mimo", "MiMoForCausalLM"),
"NemotronForCausalLM": (
"nemotron",
"NemotronForCausalLM",
),
"NemotronHForCausalLM": (
"nemotron_h",
"NemotronHForCausalLM",
),
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
"Olmo2ForCausalLM": ("olmo2", "Olmo2ForCausalLM"),
"OlmoeForCausalLM": ("olmoe", "OlmoeForCausalLM"),
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
"PersimmonForCausalLM": (
"persimmon",
"PersimmonForCausalLM",
),
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),
"Phi3SmallForCausalLM": (
"phi3_small",
"Phi3SmallForCausalLM",
),
"PhiMoEForCausalLM": ("phimoe", "PhiMoEForCausalLM"),
"Plamo2ForCausalLM": ("plamo2", "Plamo2ForCausalLM"),
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
"Qwen2MoeForCausalLM": (
"qwen2_moe",
"Qwen2MoeForCausalLM",
),
"Qwen3ForCausalLM": ("qwen3", "Qwen3ForCausalLM"),
"Qwen3MoeForCausalLM": (
"qwen3_moe",
"Qwen3MoeForCausalLM",
),
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
"StableLMEpochForCausalLM": (
"stablelm",
"StablelmForCausalLM",
),
"StableLmForCausalLM": (
"stablelm",
"StablelmForCausalLM",
),
"Starcoder2ForCausalLM": (
"starcoder2",
"Starcoder2ForCausalLM",
),
"SolarForCausalLM": ("solar", "SolarForCausalLM"),
"TeleChat2ForCausalLM": (
"telechat2",
"TeleChat2ForCausalLM",
),
"TeleFLMForCausalLM": ("teleflm", "TeleFLMForCausalLM"),
"XverseForCausalLM": ("llama", "LlamaForCausalLM"),
"Zamba2ForCausalLM": ("zamba2", "Zamba2ForCausalLM"),
"BartModel": ("bart", "BartForConditionalGeneration"),
"BartForConditionalGeneration": (
"bart",
"BartForConditionalGeneration",
),
}
_TRANSFORMERS_MODELS
module-attribute
¶
_TRANSFORMERS_MODELS = {
"TransformersForCausalLM": (
"transformers",
"TransformersForCausalLM",
)
}
_VLLM_MODELS
module-attribute
¶
_VLLM_MODELS = {
None: _TEXT_GENERATION_MODELS,
None: _EMBEDDING_MODELS,
None: _CROSS_ENCODER_MODELS,
None: _MULTIMODAL_MODELS,
None: _SPECULATIVE_DECODING_MODELS,
None: _TRANSFORMERS_MODELS,
}
_BaseRegisteredModel
¶
Bases: ABC
Source code in vllm/model_executor/models/registry.py
inspect_model_cls
abstractmethod
¶
inspect_model_cls() -> _ModelInfo
_LazyRegisteredModel
dataclass
¶
Bases: _BaseRegisteredModel
Represents a model that has not been imported in the main process.
Source code in vllm/model_executor/models/registry.py
inspect_model_cls
¶
inspect_model_cls() -> _ModelInfo
_ModelInfo
dataclass
¶
Source code in vllm/model_executor/models/registry.py
__init__
¶
__init__(
architecture: str,
is_text_generation_model: bool,
is_pooling_model: bool,
supports_cross_encoding: bool,
supports_multimodal: bool,
supports_pp: bool,
has_inner_state: bool,
is_attention_free: bool,
is_hybrid: bool,
has_noops: bool,
supports_transcription: bool,
supports_v0_only: bool,
) -> None
from_model_cls
staticmethod
¶
from_model_cls(model: type[Module]) -> _ModelInfo
Source code in vllm/model_executor/models/registry.py
_ModelRegistry
dataclass
¶
Source code in vllm/model_executor/models/registry.py
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
|
models
class-attribute
instance-attribute
¶
models: dict[str, _BaseRegisteredModel] = field(
default_factory=dict
)
_normalize_archs
¶
Source code in vllm/model_executor/models/registry.py
_raise_for_unsupported
¶
Source code in vllm/model_executor/models/registry.py
_try_inspect_model_cls
¶
_try_inspect_model_cls(
model_arch: str,
) -> Optional[_ModelInfo]
_try_load_model_cls
¶
get_supported_archs
¶
inspect_model_cls
¶
Source code in vllm/model_executor/models/registry.py
is_attention_free_model
¶
is_cross_encoder_model
¶
is_hybrid_model
¶
is_multimodal_model
¶
is_noops_model
¶
is_pooling_model
¶
is_pp_supported_model
¶
is_text_generation_model
¶
is_transcription_model
¶
is_v1_compatible
¶
model_has_inner_state
¶
register_model
¶
Register an external model to be used in vLLM.
model_cls
can be either:
- A
torch.nn.Module
class directly referencing the model. - A string in the format
<module>:<class>
which can be used to lazily import the model. This is useful to avoid initializing CUDA when importing the model and thus the related errorRuntimeError: Cannot re-initialize CUDA in forked subprocess
.
Source code in vllm/model_executor/models/registry.py
resolve_model_cls
¶
Source code in vllm/model_executor/models/registry.py
_RegisteredModel
dataclass
¶
Bases: _BaseRegisteredModel
Represents a model that has already been imported in the main process.
Source code in vllm/model_executor/models/registry.py
from_model_cls
staticmethod
¶
inspect_model_cls
¶
inspect_model_cls() -> _ModelInfo
_run
¶
Source code in vllm/model_executor/models/registry.py
_run_in_subprocess
¶
Source code in vllm/model_executor/models/registry.py
_try_inspect_model_cls
cached
¶
_try_inspect_model_cls(
model_arch: str, model: _BaseRegisteredModel
) -> Optional[_ModelInfo]
Source code in vllm/model_executor/models/registry.py
_try_load_model_cls
cached
¶
_try_load_model_cls(
model_arch: str, model: _BaseRegisteredModel
) -> Optional[type[Module]]