Skip to content

vllm.model_executor.models.minicpm

Inference-only MiniCPM model compatible with HuggingFace weights.

MiniCPMAttention

Bases: Module

Source code in vllm/model_executor/models/minicpm.py
class MiniCPMAttention(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
            quant_config=quant_config,
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=quant_config,
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
        )

        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              self.scaling,
                              num_kv_heads=self.num_kv_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        orig_dtype = q.dtype
        q, k = q.float(), k.float()
        q, k = self.rotary_emb(positions, q, k)
        q, k = q.to(orig_dtype), k.to(orig_dtype)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

head_dim instance-attribute

head_dim = hidden_size // total_num_heads

hidden_size instance-attribute

hidden_size = hidden_size

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
)

q_size instance-attribute

q_size = num_heads * head_dim

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    total_num_kv_heads,
    bias=False,
    quant_config=quant_config,
)

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
    rope_scaling=rope_scaling,
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = num_kv_heads

__init__

__init__(
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/minicpm.py
def __init__(
    self,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.hidden_size = hidden_size
    tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = num_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    self.total_num_kv_heads = num_kv_heads
    if self.total_num_kv_heads >= tp_size:
        # Number of KV heads is greater than TP size, so we partition
        # the KV heads across multiple tensor parallel GPUs.
        assert self.total_num_kv_heads % tp_size == 0
    else:
        # Number of KV heads is less than TP size, so we replicate
        # the KV heads across multiple tensor parallel GPUs.
        assert tp_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
    self.head_dim = hidden_size // self.total_num_heads
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scaling = self.head_dim**-0.5
    self.rope_theta = rope_theta
    self.max_position_embeddings = max_position_embeddings

    self.qkv_proj = QKVParallelLinear(
        hidden_size,
        self.head_dim,
        self.total_num_heads,
        self.total_num_kv_heads,
        bias=False,
        quant_config=quant_config,
    )
    self.o_proj = RowParallelLinear(
        self.total_num_heads * self.head_dim,
        hidden_size,
        bias=False,
        quant_config=quant_config,
    )

    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=max_position_embeddings,
        base=rope_theta,
        rope_scaling=rope_scaling,
    )

    self.attn = Attention(self.num_heads,
                          self.head_dim,
                          self.scaling,
                          num_kv_heads=self.num_kv_heads,
                          cache_config=cache_config,
                          quant_config=quant_config,
                          prefix=f"{prefix}.attn")

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/minicpm.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    orig_dtype = q.dtype
    q, k = q.float(), k.float()
    q, k = self.rotary_emb(positions, q, k)
    q, k = q.to(orig_dtype), k.to(orig_dtype)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

MiniCPMDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/minicpm.py
class MiniCPMDecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.config = config
        self.cache_config = cache_config
        self.quant_config = quant_config
        self.hidden_size = config.hidden_size
        self.rope_theta = getattr(config, "rope_theta", 10000)
        self.rope_scaling = getattr(config, "rope_scaling", None)
        self.max_position_embeddings = getattr(config,
                                               "max_position_embeddings", 8192)
        self.prefix = prefix
        self._init_attn_block()
        self._init_ffn_block()

    def _init_attn_block(self):
        self.input_layernorm = RMSNorm(self.config.hidden_size,
                                       eps=self.config.rms_norm_eps)
        self.self_attn = MiniCPMAttention(
            hidden_size=self.hidden_size,
            num_heads=self.config.num_attention_heads,
            num_kv_heads=self.config.num_key_value_heads,
            rope_theta=self.rope_theta,
            rope_scaling=self.rope_scaling,
            max_position_embeddings=self.max_position_embeddings,
            cache_config=self.cache_config,
            quant_config=self.quant_config,
            prefix=f"{self.prefix}.self_attn",
        )

    def _init_ffn_block(self):
        self.post_attention_layernorm = RMSNorm(self.config.hidden_size,
                                                eps=self.config.rms_norm_eps)
        self.num_experts = getattr(self.config, "num_experts", 0)
        if self.num_experts == 0:
            self.mlp = MiniCPMMLP(
                hidden_size=self.hidden_size,
                intermediate_size=self.config.intermediate_size,
                hidden_act=self.config.hidden_act,
                hidden_act_param=getattr(self.config, "hidden_act_param", 0.),
                quant_config=self.quant_config,
            )
        else:
            self.mlp = MiniCPMMoE(
                num_experts=self.config.num_experts,
                top_k=self.config.num_experts_per_tok,
                hidden_size=self.config.hidden_size,
                intermediate_size=self.config.intermediate_size)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )
        hidden_states = residual + hidden_states * \
            (self.config.scale_depth / math.sqrt(self.config.num_hidden_layers))

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states * \
            (self.config.scale_depth / math.sqrt(self.config.num_hidden_layers))

        return hidden_states, None

cache_config instance-attribute

cache_config = cache_config

config instance-attribute

config = config

hidden_size instance-attribute

hidden_size = hidden_size

max_position_embeddings instance-attribute

max_position_embeddings = getattr(
    config, "max_position_embeddings", 8192
)

prefix instance-attribute

prefix = prefix

quant_config instance-attribute

quant_config = quant_config

rope_scaling instance-attribute

rope_scaling = getattr(config, 'rope_scaling', None)

rope_theta instance-attribute

rope_theta = getattr(config, 'rope_theta', 10000)

__init__

__init__(
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/minicpm.py
def __init__(
    self,
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.config = config
    self.cache_config = cache_config
    self.quant_config = quant_config
    self.hidden_size = config.hidden_size
    self.rope_theta = getattr(config, "rope_theta", 10000)
    self.rope_scaling = getattr(config, "rope_scaling", None)
    self.max_position_embeddings = getattr(config,
                                           "max_position_embeddings", 8192)
    self.prefix = prefix
    self._init_attn_block()
    self._init_ffn_block()

_init_attn_block

_init_attn_block()
Source code in vllm/model_executor/models/minicpm.py
def _init_attn_block(self):
    self.input_layernorm = RMSNorm(self.config.hidden_size,
                                   eps=self.config.rms_norm_eps)
    self.self_attn = MiniCPMAttention(
        hidden_size=self.hidden_size,
        num_heads=self.config.num_attention_heads,
        num_kv_heads=self.config.num_key_value_heads,
        rope_theta=self.rope_theta,
        rope_scaling=self.rope_scaling,
        max_position_embeddings=self.max_position_embeddings,
        cache_config=self.cache_config,
        quant_config=self.quant_config,
        prefix=f"{self.prefix}.self_attn",
    )

_init_ffn_block

_init_ffn_block()
Source code in vllm/model_executor/models/minicpm.py
def _init_ffn_block(self):
    self.post_attention_layernorm = RMSNorm(self.config.hidden_size,
                                            eps=self.config.rms_norm_eps)
    self.num_experts = getattr(self.config, "num_experts", 0)
    if self.num_experts == 0:
        self.mlp = MiniCPMMLP(
            hidden_size=self.hidden_size,
            intermediate_size=self.config.intermediate_size,
            hidden_act=self.config.hidden_act,
            hidden_act_param=getattr(self.config, "hidden_act_param", 0.),
            quant_config=self.quant_config,
        )
    else:
        self.mlp = MiniCPMMoE(
            num_experts=self.config.num_experts,
            top_k=self.config.num_experts_per_tok,
            hidden_size=self.config.hidden_size,
            intermediate_size=self.config.intermediate_size)

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/minicpm.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
    # Self Attention
    residual = hidden_states
    hidden_states = self.input_layernorm(hidden_states)
    hidden_states = self.self_attn(
        positions=positions,
        hidden_states=hidden_states,
    )
    hidden_states = residual + hidden_states * \
        (self.config.scale_depth / math.sqrt(self.config.num_hidden_layers))

    # Fully Connected
    residual = hidden_states
    hidden_states = self.post_attention_layernorm(hidden_states)
    hidden_states = self.mlp(hidden_states)
    hidden_states = residual + hidden_states * \
        (self.config.scale_depth / math.sqrt(self.config.num_hidden_layers))

    return hidden_states, None

MiniCPMForCausalLM

Bases: Module, SupportsLoRA, SupportsPP

Source code in vllm/model_executor/models/minicpm.py
class MiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    # LoRA specific attributes
    embedding_modules = {
        "embed_tokens": "input_embeddings",
        "lm_head": "output_embeddings",
    }
    embedding_padding_modules = ["lm_head"]

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.prefix = prefix
        self.vllm_config = vllm_config
        self.config = config
        self.lora_config = lora_config
        self.cache_config = cache_config
        self.quant_config = quant_config

        self.model = self._init_model(vllm_config=vllm_config,
                                      prefix=maybe_prefix(prefix, "model"))

        unpadded_vocab_size = config.vocab_size
        if lora_config:
            unpadded_vocab_size += lora_config.lora_extra_vocab_size
        self.lm_head = ParallelLMHead(
            unpadded_vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            padding_size=DEFAULT_VOCAB_PADDING_SIZE
            # We need bigger padding if using lora for kernel
            # compatibility
            if not lora_config else lora_config.lora_vocab_padding_size,
            quant_config=quant_config,
        )
        if config.tie_word_embeddings:
            self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
        self.scale_width = self.config.hidden_size / self.config.dim_model_base

        self.logits_processor = LogitsProcessor(unpadded_vocab_size,
                                                config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def _init_model(self, *, vllm_config: VllmConfig, prefix: str = ""):
        return MiniCPMModel(vllm_config=vllm_config, prefix=prefix)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, intermediate_tensors,
                                   inputs_embeds) / self.scale_width
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(
            self,
            skip_prefixes=(["lm_head."]
                           if self.config.tie_word_embeddings else None),
        )
        return loader.load_weights(weights)

cache_config instance-attribute

cache_config = cache_config

config instance-attribute

config = config

embedding_modules class-attribute instance-attribute

embedding_modules = {
    "embed_tokens": "input_embeddings",
    "lm_head": "output_embeddings",
}

embedding_padding_modules class-attribute instance-attribute

embedding_padding_modules = ['lm_head']

lm_head instance-attribute

lm_head = ParallelLMHead(
    unpadded_vocab_size,
    hidden_size,
    org_num_embeddings=vocab_size,
    padding_size=DEFAULT_VOCAB_PADDING_SIZE
    if not lora_config
    else lora_vocab_padding_size,
    quant_config=quant_config,
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(
    unpadded_vocab_size, vocab_size
)

lora_config instance-attribute

lora_config = lora_config

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = _init_model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

prefix instance-attribute

prefix = prefix

quant_config instance-attribute

quant_config = quant_config

scale_width instance-attribute

scale_width = hidden_size / dim_model_base

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/minicpm.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config

    self.prefix = prefix
    self.vllm_config = vllm_config
    self.config = config
    self.lora_config = lora_config
    self.cache_config = cache_config
    self.quant_config = quant_config

    self.model = self._init_model(vllm_config=vllm_config,
                                  prefix=maybe_prefix(prefix, "model"))

    unpadded_vocab_size = config.vocab_size
    if lora_config:
        unpadded_vocab_size += lora_config.lora_extra_vocab_size
    self.lm_head = ParallelLMHead(
        unpadded_vocab_size,
        config.hidden_size,
        org_num_embeddings=config.vocab_size,
        padding_size=DEFAULT_VOCAB_PADDING_SIZE
        # We need bigger padding if using lora for kernel
        # compatibility
        if not lora_config else lora_config.lora_vocab_padding_size,
        quant_config=quant_config,
    )
    if config.tie_word_embeddings:
        self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
    self.scale_width = self.config.hidden_size / self.config.dim_model_base

    self.logits_processor = LogitsProcessor(unpadded_vocab_size,
                                            config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

_init_model

_init_model(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/minicpm.py
def _init_model(self, *, vllm_config: VllmConfig, prefix: str = ""):
    return MiniCPMModel(vllm_config=vllm_config, prefix=prefix)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/minicpm.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/minicpm.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    hidden_states = self.model(input_ids, positions, intermediate_tensors,
                               inputs_embeds) / self.scale_width
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/minicpm.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/minicpm.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(
        self,
        skip_prefixes=(["lm_head."]
                       if self.config.tie_word_embeddings else None),
    )
    return loader.load_weights(weights)

MiniCPMMLP

Bases: Module

Source code in vllm/model_executor/models/minicpm.py
class MiniCPMMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        hidden_act_param: float,
        quant_config: Optional[QuantizationConfig] = None,
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config)
        self.down_proj = RowParallelLinear(intermediate_size,
                                           hidden_size,
                                           bias=False,
                                           quant_config=quant_config)
        if hidden_act == "silu":
            self.act_fn = SiluAndMul()
        elif hidden_act == "fatrelu":
            self.act_fn = FatreluAndMul(threshold=hidden_act_param)
        else:
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu and fatrelu are supported for now.")

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x

act_fn instance-attribute

act_fn = SiluAndMul()

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=False,
    quant_config=quant_config,
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    hidden_size,
    [intermediate_size] * 2,
    bias=False,
    quant_config=quant_config,
)

__init__

__init__(
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    hidden_act_param: float,
    quant_config: Optional[QuantizationConfig] = None,
) -> None
Source code in vllm/model_executor/models/minicpm.py
def __init__(
    self,
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    hidden_act_param: float,
    quant_config: Optional[QuantizationConfig] = None,
) -> None:
    super().__init__()
    self.gate_up_proj = MergedColumnParallelLinear(
        hidden_size, [intermediate_size] * 2,
        bias=False,
        quant_config=quant_config)
    self.down_proj = RowParallelLinear(intermediate_size,
                                       hidden_size,
                                       bias=False,
                                       quant_config=quant_config)
    if hidden_act == "silu":
        self.act_fn = SiluAndMul()
    elif hidden_act == "fatrelu":
        self.act_fn = FatreluAndMul(threshold=hidden_act_param)
    else:
        raise ValueError(f"Unsupported activation: {hidden_act}. "
                         "Only silu and fatrelu are supported for now.")

forward

forward(x)
Source code in vllm/model_executor/models/minicpm.py
def forward(self, x):
    gate_up, _ = self.gate_up_proj(x)
    x = self.act_fn(gate_up)
    x, _ = self.down_proj(x)
    return x

MiniCPMMoE

Bases: Module

A tensor-parallel MoE implementation that shards each expert across all ranks.

Each expert's weights are sharded across all ranks and a fused MoE kernel is used for the forward pass, and finally we reduce the outputs across ranks.

Source code in vllm/model_executor/models/minicpm.py
class MiniCPMMoE(nn.Module):
    """A tensor-parallel MoE implementation that shards each expert
    across all ranks.

    Each expert's weights are sharded across all ranks and a fused MoE
    kernel is used for the forward pass, and finally we reduce the outputs
    across ranks.
    """

    def __init__(
        self,
        num_experts: int,
        top_k: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: Optional[torch.dtype] = None,
        tp_size: Optional[int] = None,
    ):
        super().__init__()
        self.tp_size = tp_size or get_tensor_model_parallel_world_size()
        self.num_total_experts = num_experts
        self.top_k = top_k
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size // self.tp_size

        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.params_dtype = params_dtype

        self.gate = ReplicatedLinear(self.hidden_size,
                                     self.num_total_experts,
                                     bias=False,
                                     params_dtype=self.params_dtype,
                                     quant_config=None)

        self.ws = nn.Parameter(
            torch.empty(self.num_total_experts,
                        2 * self.intermediate_size,
                        self.hidden_size,
                        device=current_platform.device_type,
                        dtype=self.params_dtype))
        self.w2s = nn.Parameter(
            torch.empty(self.num_total_experts,
                        self.hidden_size,
                        self.intermediate_size,
                        device=current_platform.device_type,
                        dtype=self.params_dtype))

        set_weight_attrs(self.ws, {
            "weight_loader": self.weight_loader,
        })
        set_weight_attrs(self.w2s, {
            "weight_loader": self.weight_loader,
        })

    def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
                      weight_name: str, expert_id: int):
        tp_rank = get_tensor_model_parallel_rank()
        param_data = param.data
        shard_size = self.intermediate_size
        shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
        if weight_name.endswith("w1.weight"):
            param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :]
        if weight_name.endswith("w3.weight"):
            param_data[expert_id,
                       shard_size:2 * shard_size, :] = loaded_weight[shard, :]
        if weight_name.endswith("w2.weight"):
            param_data[expert_id, :, :] = loaded_weight[:, shard]

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        num_tokens, hidden_size = hidden_states.shape
        hidden_states = hidden_states.view(-1, self.hidden_size)
        # router_logits: (num_tokens, n_experts)
        router_logits, _ = self.gate(hidden_states)
        final_hidden_states = fused_moe(hidden_states,
                                        self.ws,
                                        self.w2s,
                                        router_logits,
                                        self.top_k,
                                        renormalize=True,
                                        inplace=True)

        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(
                final_hidden_states)

        return final_hidden_states.view(num_tokens, hidden_size)

gate instance-attribute

gate = ReplicatedLinear(
    hidden_size,
    num_total_experts,
    bias=False,
    params_dtype=params_dtype,
    quant_config=None,
)

hidden_size instance-attribute

hidden_size = hidden_size

intermediate_size instance-attribute

intermediate_size = intermediate_size // tp_size

num_total_experts instance-attribute

num_total_experts = num_experts

params_dtype instance-attribute

params_dtype = params_dtype

top_k instance-attribute

top_k = top_k

tp_size instance-attribute

tp_size = tp_size or get_tensor_model_parallel_world_size()

w2s instance-attribute

w2s = Parameter(
    empty(
        num_total_experts,
        hidden_size,
        intermediate_size,
        device=device_type,
        dtype=params_dtype,
    )
)

ws instance-attribute

ws = Parameter(
    empty(
        num_total_experts,
        2 * intermediate_size,
        hidden_size,
        device=device_type,
        dtype=params_dtype,
    )
)

__init__

__init__(
    num_experts: int,
    top_k: int,
    hidden_size: int,
    intermediate_size: int,
    params_dtype: Optional[dtype] = None,
    tp_size: Optional[int] = None,
)
Source code in vllm/model_executor/models/minicpm.py
def __init__(
    self,
    num_experts: int,
    top_k: int,
    hidden_size: int,
    intermediate_size: int,
    params_dtype: Optional[torch.dtype] = None,
    tp_size: Optional[int] = None,
):
    super().__init__()
    self.tp_size = tp_size or get_tensor_model_parallel_world_size()
    self.num_total_experts = num_experts
    self.top_k = top_k
    self.hidden_size = hidden_size
    self.intermediate_size = intermediate_size // self.tp_size

    if params_dtype is None:
        params_dtype = torch.get_default_dtype()
    self.params_dtype = params_dtype

    self.gate = ReplicatedLinear(self.hidden_size,
                                 self.num_total_experts,
                                 bias=False,
                                 params_dtype=self.params_dtype,
                                 quant_config=None)

    self.ws = nn.Parameter(
        torch.empty(self.num_total_experts,
                    2 * self.intermediate_size,
                    self.hidden_size,
                    device=current_platform.device_type,
                    dtype=self.params_dtype))
    self.w2s = nn.Parameter(
        torch.empty(self.num_total_experts,
                    self.hidden_size,
                    self.intermediate_size,
                    device=current_platform.device_type,
                    dtype=self.params_dtype))

    set_weight_attrs(self.ws, {
        "weight_loader": self.weight_loader,
    })
    set_weight_attrs(self.w2s, {
        "weight_loader": self.weight_loader,
    })

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/minicpm.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    num_tokens, hidden_size = hidden_states.shape
    hidden_states = hidden_states.view(-1, self.hidden_size)
    # router_logits: (num_tokens, n_experts)
    router_logits, _ = self.gate(hidden_states)
    final_hidden_states = fused_moe(hidden_states,
                                    self.ws,
                                    self.w2s,
                                    router_logits,
                                    self.top_k,
                                    renormalize=True,
                                    inplace=True)

    if self.tp_size > 1:
        final_hidden_states = tensor_model_parallel_all_reduce(
            final_hidden_states)

    return final_hidden_states.view(num_tokens, hidden_size)

weight_loader

weight_loader(
    param: Parameter,
    loaded_weight: Tensor,
    weight_name: str,
    expert_id: int,
)
Source code in vllm/model_executor/models/minicpm.py
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
                  weight_name: str, expert_id: int):
    tp_rank = get_tensor_model_parallel_rank()
    param_data = param.data
    shard_size = self.intermediate_size
    shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
    if weight_name.endswith("w1.weight"):
        param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :]
    if weight_name.endswith("w3.weight"):
        param_data[expert_id,
                   shard_size:2 * shard_size, :] = loaded_weight[shard, :]
    if weight_name.endswith("w2.weight"):
        param_data[expert_id, :, :] = loaded_weight[:, shard]

MiniCPMModel

Bases: Module

Source code in vllm/model_executor/models/minicpm.py
@support_torch_compile
class MiniCPMModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        self.cache_config = cache_config
        self.quant_config = quant_config
        lora_vocab = (lora_config.lora_extra_vocab_size *
                      (lora_config.max_loras or 1)) if lora_config else 0
        self.vocab_size = config.vocab_size + lora_vocab
        self.org_vocab_size = config.vocab_size
        self.embed_tokens = VocabParallelEmbedding(
            self.vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
        )
        self.num_experts = getattr(self.config, "num_experts", 0)
        self._init_layers(prefix, config, cache_config, quant_config)
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], self.config.hidden_size))

    def _init_layers(
        self,
        prefix: str,
        config: PretrainedConfig,
        cache_config: Optional[CacheConfig],
        quant_config: Optional[QuantizationConfig],
    ):
        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: MiniCPMDecoderLayer(
                config, cache_config, quant_config, prefix=prefix),
            prefix=f"{prefix}.layers")

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        embedding = self.embed_tokens(input_ids)
        return embedding * self.config.scale_emb

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        for layer in self.layers[self.start_layer:self.end_layer]:
            hidden_states, residual = layer(
                positions,
                hidden_states,
                residual,
            )
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })
        hidden_states = self.norm(hidden_states)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        expert_params_mapping = [
            # (param_name, weight_name, expert_id)
            ("ws" if weight_name in ["w1", "w3"] else "w2s",
             f"experts.{expert_id}.{weight_name}.weight", expert_id)
            for expert_id in range(self.num_experts)
            for weight_name in ["w1", "w2", "w3"]
        ]
        params_dict = dict(self.named_parameters())

        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            if ("rotary_emb.cos_cached" in name
                    or "rotary_emb.sin_cached" in name):
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for param_name, weight_name, expert_id in expert_params_mapping:
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    if is_pp_missing_parameter(name, self):
                        continue
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(param,
                                  loaded_weight,
                                  weight_name,
                                  expert_id=expert_id)
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
                    if is_pp_missing_parameter(name, self):
                        continue
                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader",
                                            default_weight_loader)
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

cache_config instance-attribute

cache_config = cache_config

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size, org_num_embeddings=vocab_size
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states", "residual"], hidden_size
    )
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

num_experts instance-attribute

num_experts = getattr(config, 'num_experts', 0)

org_vocab_size instance-attribute

org_vocab_size = vocab_size

quant_config instance-attribute

quant_config = quant_config

vocab_size instance-attribute

vocab_size = vocab_size + lora_vocab

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/minicpm.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config

    self.config = config
    self.cache_config = cache_config
    self.quant_config = quant_config
    lora_vocab = (lora_config.lora_extra_vocab_size *
                  (lora_config.max_loras or 1)) if lora_config else 0
    self.vocab_size = config.vocab_size + lora_vocab
    self.org_vocab_size = config.vocab_size
    self.embed_tokens = VocabParallelEmbedding(
        self.vocab_size,
        config.hidden_size,
        org_num_embeddings=config.vocab_size,
    )
    self.num_experts = getattr(self.config, "num_experts", 0)
    self._init_layers(prefix, config, cache_config, quant_config)
    self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], self.config.hidden_size))

_init_layers

_init_layers(
    prefix: str,
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig],
    quant_config: Optional[QuantizationConfig],
)
Source code in vllm/model_executor/models/minicpm.py
def _init_layers(
    self,
    prefix: str,
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig],
    quant_config: Optional[QuantizationConfig],
):
    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: MiniCPMDecoderLayer(
            config, cache_config, quant_config, prefix=prefix),
        prefix=f"{prefix}.layers")

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/minicpm.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]

    for layer in self.layers[self.start_layer:self.end_layer]:
        hidden_states, residual = layer(
            positions,
            hidden_states,
            residual,
        )
    if not get_pp_group().is_last_rank:
        return IntermediateTensors({
            "hidden_states": hidden_states,
            "residual": residual
        })
    hidden_states = self.norm(hidden_states)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/minicpm.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    embedding = self.embed_tokens(input_ids)
    return embedding * self.config.scale_emb

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/minicpm.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
    ]
    expert_params_mapping = [
        # (param_name, weight_name, expert_id)
        ("ws" if weight_name in ["w1", "w3"] else "w2s",
         f"experts.{expert_id}.{weight_name}.weight", expert_id)
        for expert_id in range(self.num_experts)
        for weight_name in ["w1", "w2", "w3"]
    ]
    params_dict = dict(self.named_parameters())

    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue
        if ("rotary_emb.cos_cached" in name
                or "rotary_emb.sin_cached" in name):
            # Models trained using ColossalAI may include these tensors in
            # the checkpoint. Skip them.
            continue
        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            for param_name, weight_name, expert_id in expert_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param,
                              loaded_weight,
                              weight_name,
                              expert_id=expert_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params