Skip to content

vllm.model_executor.models.mpt

MPTAttention

Bases: Module

Source code in vllm/model_executor/models/mpt.py
class MPTAttention(nn.Module):

    def __init__(
        self,
        config: MPTConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.d_model = config.d_model
        self.total_num_heads = config.n_heads
        self.head_dim = self.d_model // self.total_num_heads
        self.clip_qkv = config.attn_config["clip_qkv"]
        self.qk_ln = config.attn_config["qk_ln"]
        self.alibi_bias_max = config.attn_config["alibi_bias_max"]
        if "kv_n_heads" in config.attn_config:
            self.total_num_kv_heads = config.attn_config['kv_n_heads']
        else:
            self.total_num_kv_heads = self.total_num_heads
        assert not config.attn_config["prefix_lm"]
        assert config.attn_config["alibi"]

        # pylint: disable=invalid-name
        self.Wqkv = QKVParallelLinear(
            self.d_model,
            self.d_model // self.total_num_heads,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=not config.no_bias,
            quant_config=quant_config,
        )
        if self.qk_ln:
            self.q_ln = nn.LayerNorm(self.d_model)
            self.k_ln = nn.LayerNorm(self.d_model)
        self.out_proj = RowParallelLinear(
            self.d_model,
            self.d_model,
            bias=not config.no_bias,
            quant_config=quant_config,
        )

        tp_world_size = get_tensor_model_parallel_world_size()
        assert self.total_num_heads % tp_world_size == 0
        self.num_heads = self.total_num_heads // tp_world_size

        if self.total_num_kv_heads >= tp_world_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_world_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_world_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        # Create the alibi slopes and slice them.
        tp_rank = get_tensor_model_parallel_rank()
        head_start = tp_rank * self.num_heads
        head_end = (tp_rank + 1) * self.num_heads
        alibi_slopes = _get_alibi_slopes(self.total_num_heads,
                                         self.alibi_bias_max)
        alibi_slopes = alibi_slopes[head_start:head_end].tolist()

        self.head_dim = self.d_model // self.total_num_heads
        scaling = self.head_dim**-0.5
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              scaling,
                              alibi_slopes=alibi_slopes,
                              num_kv_heads=self.num_kv_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        del position_ids  # unused.
        qkv, _ = self.Wqkv(hidden_states)
        if self.clip_qkv is not None:
            qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        if self.qk_ln:
            q = self.q_ln(q)
            k = self.k_ln(k)
        attn_output = self.attn(q, k, v)
        output, _ = self.out_proj(attn_output)
        return output

Wqkv instance-attribute

Wqkv = QKVParallelLinear(
    d_model,
    d_model // total_num_heads,
    total_num_heads,
    total_num_kv_heads,
    bias=not no_bias,
    quant_config=quant_config,
)

alibi_bias_max instance-attribute

alibi_bias_max = attn_config['alibi_bias_max']

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    alibi_slopes=alibi_slopes,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

clip_qkv instance-attribute

clip_qkv = attn_config['clip_qkv']

d_model instance-attribute

d_model = d_model

head_dim instance-attribute

head_dim = d_model // total_num_heads

k_ln instance-attribute

k_ln = LayerNorm(d_model)

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

num_heads instance-attribute

num_heads = total_num_heads // tp_world_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_world_size)

out_proj instance-attribute

out_proj = RowParallelLinear(
    d_model,
    d_model,
    bias=not no_bias,
    quant_config=quant_config,
)

q_ln instance-attribute

q_ln = LayerNorm(d_model)

q_size instance-attribute

q_size = num_heads * head_dim

qk_ln instance-attribute

qk_ln = attn_config['qk_ln']

total_num_heads instance-attribute

total_num_heads = n_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = attn_config['kv_n_heads']

__init__

__init__(
    config: MPTConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/mpt.py
def __init__(
    self,
    config: MPTConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.d_model = config.d_model
    self.total_num_heads = config.n_heads
    self.head_dim = self.d_model // self.total_num_heads
    self.clip_qkv = config.attn_config["clip_qkv"]
    self.qk_ln = config.attn_config["qk_ln"]
    self.alibi_bias_max = config.attn_config["alibi_bias_max"]
    if "kv_n_heads" in config.attn_config:
        self.total_num_kv_heads = config.attn_config['kv_n_heads']
    else:
        self.total_num_kv_heads = self.total_num_heads
    assert not config.attn_config["prefix_lm"]
    assert config.attn_config["alibi"]

    # pylint: disable=invalid-name
    self.Wqkv = QKVParallelLinear(
        self.d_model,
        self.d_model // self.total_num_heads,
        self.total_num_heads,
        self.total_num_kv_heads,
        bias=not config.no_bias,
        quant_config=quant_config,
    )
    if self.qk_ln:
        self.q_ln = nn.LayerNorm(self.d_model)
        self.k_ln = nn.LayerNorm(self.d_model)
    self.out_proj = RowParallelLinear(
        self.d_model,
        self.d_model,
        bias=not config.no_bias,
        quant_config=quant_config,
    )

    tp_world_size = get_tensor_model_parallel_world_size()
    assert self.total_num_heads % tp_world_size == 0
    self.num_heads = self.total_num_heads // tp_world_size

    if self.total_num_kv_heads >= tp_world_size:
        # Number of KV heads is greater than TP size, so we partition
        # the KV heads across multiple tensor parallel GPUs.
        assert self.total_num_kv_heads % tp_world_size == 0
    else:
        # Number of KV heads is less than TP size, so we replicate
        # the KV heads across multiple tensor parallel GPUs.
        assert tp_world_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    # Create the alibi slopes and slice them.
    tp_rank = get_tensor_model_parallel_rank()
    head_start = tp_rank * self.num_heads
    head_end = (tp_rank + 1) * self.num_heads
    alibi_slopes = _get_alibi_slopes(self.total_num_heads,
                                     self.alibi_bias_max)
    alibi_slopes = alibi_slopes[head_start:head_end].tolist()

    self.head_dim = self.d_model // self.total_num_heads
    scaling = self.head_dim**-0.5
    self.attn = Attention(self.num_heads,
                          self.head_dim,
                          scaling,
                          alibi_slopes=alibi_slopes,
                          num_kv_heads=self.num_kv_heads,
                          cache_config=cache_config,
                          quant_config=quant_config,
                          prefix=f"{prefix}.attn")

forward

forward(
    position_ids: Tensor, hidden_states: Tensor
) -> Tensor
Source code in vllm/model_executor/models/mpt.py
def forward(
    self,
    position_ids: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    del position_ids  # unused.
    qkv, _ = self.Wqkv(hidden_states)
    if self.clip_qkv is not None:
        qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    if self.qk_ln:
        q = self.q_ln(q)
        k = self.k_ln(k)
    attn_output = self.attn(q, k, v)
    output, _ = self.out_proj(attn_output)
    return output

MPTBlock

Bases: Module

Source code in vllm/model_executor/models/mpt.py
class MPTBlock(nn.Module):

    def __init__(
        self,
        config: MPTConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        hidden_size = config.d_model
        self.norm_1 = nn.LayerNorm(hidden_size)
        self.attn = MPTAttention(config,
                                 cache_config,
                                 quant_config,
                                 prefix=f"{prefix}.attn")
        self.norm_2 = nn.LayerNorm(hidden_size)
        self.ffn = MPTMLP(config, quant_config)

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        x = self.norm_1(hidden_states)
        x = self.attn(
            position_ids=position_ids,
            hidden_states=x,
        )
        hidden_states = hidden_states + x
        x = self.norm_2(hidden_states)
        x = self.ffn(x)
        hidden_states = hidden_states + x
        return hidden_states

attn instance-attribute

attn = MPTAttention(
    config,
    cache_config,
    quant_config,
    prefix=f"{prefix}.attn",
)

ffn instance-attribute

ffn = MPTMLP(config, quant_config)

norm_1 instance-attribute

norm_1 = LayerNorm(hidden_size)

norm_2 instance-attribute

norm_2 = LayerNorm(hidden_size)

__init__

__init__(
    config: MPTConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/mpt.py
def __init__(
    self,
    config: MPTConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    hidden_size = config.d_model
    self.norm_1 = nn.LayerNorm(hidden_size)
    self.attn = MPTAttention(config,
                             cache_config,
                             quant_config,
                             prefix=f"{prefix}.attn")
    self.norm_2 = nn.LayerNorm(hidden_size)
    self.ffn = MPTMLP(config, quant_config)

forward

forward(
    position_ids: Tensor, hidden_states: Tensor
) -> Tensor
Source code in vllm/model_executor/models/mpt.py
def forward(
    self,
    position_ids: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    x = self.norm_1(hidden_states)
    x = self.attn(
        position_ids=position_ids,
        hidden_states=x,
    )
    hidden_states = hidden_states + x
    x = self.norm_2(hidden_states)
    x = self.ffn(x)
    hidden_states = hidden_states + x
    return hidden_states

MPTForCausalLM

Bases: Module, SupportsPP

Source code in vllm/model_executor/models/mpt.py
class MPTForCausalLM(nn.Module, SupportsPP):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config
        assert config.tie_word_embeddings
        self.quant_config = quant_config

        self.transformer = MPTModel(vllm_config=vllm_config,
                                    prefix=maybe_prefix(prefix, "transformer"))
        self.lm_head = self.transformer.wte
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.transformer.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.transformer.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.transformer(input_ids, positions,
                                         intermediate_tensors, inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

config instance-attribute

config = config

lm_head instance-attribute

lm_head = wte

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

quant_config instance-attribute

quant_config = quant_config

transformer instance-attribute

transformer = MPTModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "transformer"),
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/mpt.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.config = config
    assert config.tie_word_embeddings
    self.quant_config = quant_config

    self.transformer = MPTModel(vllm_config=vllm_config,
                                prefix=maybe_prefix(prefix, "transformer"))
    self.lm_head = self.transformer.wte
    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.transformer.make_empty_intermediate_tensors)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/mpt.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/mpt.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    hidden_states = self.transformer(input_ids, positions,
                                     intermediate_tensors, inputs_embeds)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/mpt.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.transformer.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/mpt.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

MPTMLP

Bases: Module

Source code in vllm/model_executor/models/mpt.py
class MPTMLP(nn.Module):

    def __init__(
        self,
        config: MPTConfig,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        hidden_size = config.d_model
        expansion_ratio = config.expansion_ratio
        intermediate_size = expansion_ratio * hidden_size
        self.up_proj = ColumnParallelLinear(
            hidden_size,
            intermediate_size,
            bias=not config.no_bias,
            quant_config=quant_config,
        )
        self.act = get_act_fn("gelu")
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=not config.no_bias,
            quant_config=quant_config,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, _ = self.up_proj(x)
        x = self.act(x)
        x, _ = self.down_proj(x)
        return x

act instance-attribute

act = get_act_fn('gelu')

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=not no_bias,
    quant_config=quant_config,
)

up_proj instance-attribute

up_proj = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    bias=not no_bias,
    quant_config=quant_config,
)

__init__

__init__(
    config: MPTConfig,
    quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/mpt.py
def __init__(
    self,
    config: MPTConfig,
    quant_config: Optional[QuantizationConfig] = None,
):
    super().__init__()
    hidden_size = config.d_model
    expansion_ratio = config.expansion_ratio
    intermediate_size = expansion_ratio * hidden_size
    self.up_proj = ColumnParallelLinear(
        hidden_size,
        intermediate_size,
        bias=not config.no_bias,
        quant_config=quant_config,
    )
    self.act = get_act_fn("gelu")
    self.down_proj = RowParallelLinear(
        intermediate_size,
        hidden_size,
        bias=not config.no_bias,
        quant_config=quant_config,
    )

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/mpt.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    x, _ = self.up_proj(x)
    x = self.act(x)
    x, _ = self.down_proj(x)
    return x

MPTModel

Bases: Module

Source code in vllm/model_executor/models/mpt.py
@support_torch_compile
class MPTModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config

        assert config.embedding_fraction == 1.0
        assert config.norm_type == "low_precision_layernorm"

        self.wte = VocabParallelEmbedding(
            config.vocab_size,
            config.d_model,
        )
        self.start_layer, self.end_layer, self.blocks = make_layers(
            config.n_layers,
            lambda prefix: MPTBlock(
                config, cache_config, quant_config, prefix=prefix),
            prefix=f"{prefix}.blocks")
        self.norm_f = nn.LayerNorm(config.d_model)
        if config.no_bias:
            for module in self.modules():
                if hasattr(module, "bias") and isinstance(
                        module.bias, nn.Parameter):
                    # Remove the bias term in Linear and LayerNorm.
                    module.register_parameter("bias", None)
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(["hidden_states"],
                                                    config.d_model))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.wte(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]

        for block in self.blocks[self.start_layer:self.end_layer]:
            hidden_states = block(position_ids, hidden_states)
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({"hidden_states": hidden_states})
        hidden_states = self.norm_f(hidden_states)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states"], d_model
    )
)

norm_f instance-attribute

norm_f = LayerNorm(d_model)

wte instance-attribute

wte = VocabParallelEmbedding(vocab_size, d_model)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/mpt.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config

    assert config.embedding_fraction == 1.0
    assert config.norm_type == "low_precision_layernorm"

    self.wte = VocabParallelEmbedding(
        config.vocab_size,
        config.d_model,
    )
    self.start_layer, self.end_layer, self.blocks = make_layers(
        config.n_layers,
        lambda prefix: MPTBlock(
            config, cache_config, quant_config, prefix=prefix),
        prefix=f"{prefix}.blocks")
    self.norm_f = nn.LayerNorm(config.d_model)
    if config.no_bias:
        for module in self.modules():
            if hasattr(module, "bias") and isinstance(
                    module.bias, nn.Parameter):
                # Remove the bias term in Linear and LayerNorm.
                module.register_parameter("bias", None)
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(["hidden_states"],
                                                config.d_model))

forward

forward(
    input_ids: Tensor,
    position_ids: Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/mpt.py
def forward(
    self,
    input_ids: torch.Tensor,
    position_ids: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]

    for block in self.blocks[self.start_layer:self.end_layer]:
        hidden_states = block(position_ids, hidden_states)
    if not get_pp_group().is_last_rank:
        return IntermediateTensors({"hidden_states": hidden_states})
    hidden_states = self.norm_f(hidden_states)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/mpt.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.wte(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/mpt.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    params_dict = dict(self.named_parameters(remove_duplicate=False))
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        # Skip loading extra bias for GPTQ models.
        if name.endswith(".bias") and name not in params_dict:
            continue
        if is_pp_missing_parameter(name, self):
            continue
        param = params_dict[name]
        weight_loader = getattr(param, "weight_loader",
                                default_weight_loader)
        weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

_get_alibi_slopes

_get_alibi_slopes(
    total_num_heads: int, alibi_bias_max: int
) -> Tensor
Source code in vllm/model_executor/models/mpt.py
def _get_alibi_slopes(
    total_num_heads: int,
    alibi_bias_max: int,
) -> torch.Tensor:
    next_power_of_2 = 2**math.ceil(math.log2(total_num_heads))
    m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
    m = m.mul(alibi_bias_max / next_power_of_2)
    slopes = 1.0 / torch.pow(2, m)
    if next_power_of_2 != total_num_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
    return slopes