Skip to content

vllm.model_executor.models.nemotron_nas

Inference-only deci model compatible with HuggingFace weights.

DeciLMAttention

Bases: LlamaAttention

Source code in vllm/model_executor/models/nemotron_nas.py
class DeciLMAttention(LlamaAttention):

    def __init__(
        self,
        config: LlamaConfig,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
        bias: bool = False,
        bias_o_proj: bool = False,
        cache_config: Optional[CacheConfig] = None,
        prefix: str = "",
        attn_type: str = AttentionType.DECODER,
    ) -> None:
        super().__init__(config, hidden_size, num_heads, num_kv_heads,
                         rope_theta, rope_scaling, max_position_embeddings,
                         quant_config, bias, bias_o_proj, cache_config, prefix,
                         attn_type)

    def _init_rotary_emb(self, config, rope_scaling: Optional[dict[str, Any]],
                         quant_config: Optional[QuantizationConfig]) -> None:
        # Enables YARN for Mistral and LLaMA4 derivatives.
        is_neox_style = True
        if hasattr(config, "position_embedding_type"):
            is_neox_style = config.position_embedding_type not in [
                "mistral_yarn", "rope_llama4"
            ]

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=self.max_position_embeddings,
            base=self.rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=is_neox_style,
            partial_rotary_factor=self.partial_rotary_factor)

__init__

__init__(
    config: LlamaConfig,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    quant_config: Optional[QuantizationConfig] = None,
    bias: bool = False,
    bias_o_proj: bool = False,
    cache_config: Optional[CacheConfig] = None,
    prefix: str = "",
    attn_type: str = DECODER,
) -> None
Source code in vllm/model_executor/models/nemotron_nas.py
def __init__(
    self,
    config: LlamaConfig,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    quant_config: Optional[QuantizationConfig] = None,
    bias: bool = False,
    bias_o_proj: bool = False,
    cache_config: Optional[CacheConfig] = None,
    prefix: str = "",
    attn_type: str = AttentionType.DECODER,
) -> None:
    super().__init__(config, hidden_size, num_heads, num_kv_heads,
                     rope_theta, rope_scaling, max_position_embeddings,
                     quant_config, bias, bias_o_proj, cache_config, prefix,
                     attn_type)

_init_rotary_emb

_init_rotary_emb(
    config,
    rope_scaling: Optional[dict[str, Any]],
    quant_config: Optional[QuantizationConfig],
) -> None
Source code in vllm/model_executor/models/nemotron_nas.py
def _init_rotary_emb(self, config, rope_scaling: Optional[dict[str, Any]],
                     quant_config: Optional[QuantizationConfig]) -> None:
    # Enables YARN for Mistral and LLaMA4 derivatives.
    is_neox_style = True
    if hasattr(config, "position_embedding_type"):
        is_neox_style = config.position_embedding_type not in [
            "mistral_yarn", "rope_llama4"
        ]

    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=self.max_position_embeddings,
        base=self.rope_theta,
        rope_scaling=rope_scaling,
        is_neox_style=is_neox_style,
        partial_rotary_factor=self.partial_rotary_factor)

DeciLMDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/nemotron_nas.py
class DeciLMDecoderLayer(nn.Module):

    def __init__(
        self,
        config: LlamaConfig,
        layer_idx: int,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        block_config = config.block_configs[layer_idx]
        self._is_no_op_attention = block_config.attention.no_op
        self._is_no_op_ffn = block_config.ffn.no_op

        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        if rope_scaling is not None and getattr(
                config, "original_max_position_embeddings", None):
            rope_scaling["original_max_position_embeddings"] = (
                config.original_max_position_embeddings)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
        # Support abacusai/Smaug-72B-v0.1 with attention_bias
        # Support internlm/internlm-7b with bias
        attention_bias = getattr(config, "attention_bias", False) or getattr(
            config, "bias", False)
        bias_o_proj = attention_bias
        # support internlm/internlm3-8b with qkv_bias
        if hasattr(config, "qkv_bias"):
            attention_bias = config.qkv_bias

        if not self._is_no_op_attention:
            num_kv_heads = (config.num_attention_heads //
                            block_config.attention.n_heads_in_group)
            self.self_attn = DeciLMAttention(
                config=config,
                hidden_size=self.hidden_size,
                num_heads=config.num_attention_heads,
                num_kv_heads=num_kv_heads,
                rope_theta=rope_theta,
                rope_scaling=rope_scaling,
                max_position_embeddings=max_position_embeddings,
                quant_config=quant_config,
                bias=attention_bias,
                bias_o_proj=bias_o_proj,
                cache_config=cache_config,
                prefix=f"{prefix}.self_attn",
            )
            self.input_layernorm = RMSNorm(config.hidden_size,
                                           eps=config.rms_norm_eps)

        if not self._is_no_op_ffn:
            ffn_mult = block_config.ffn.ffn_mult
            intermediate_size = _ffn_mult_to_intermediate_size(
                ffn_mult, config.hidden_size)

            self.mlp = LlamaMLP(
                hidden_size=self.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                bias=getattr(config, "mlp_bias", False),
                prefix=f"{prefix}.mlp",
            )
            self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                    eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Self Attention

        if self._is_no_op_attention:
            pass
        else:
            if (residual is None):
                residual = hidden_states
                hidden_states = self.input_layernorm(hidden_states)
            else:
                hidden_states, residual = self.input_layernorm(
                    hidden_states, residual)
            hidden_states = self.self_attn(
                positions=positions,
                hidden_states=hidden_states,
            )

        # Fully Connected
        if not self._is_no_op_ffn:
            hidden_states, residual = self.post_attention_layernorm(
                hidden_states, residual)
            hidden_states = self.mlp(hidden_states)
        return hidden_states, residual

_is_no_op_attention instance-attribute

_is_no_op_attention = no_op

_is_no_op_ffn instance-attribute

_is_no_op_ffn = no_op

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

mlp instance-attribute

mlp = LlamaMLP(
    hidden_size=hidden_size,
    intermediate_size=intermediate_size,
    hidden_act=hidden_act,
    quant_config=quant_config,
    bias=getattr(config, "mlp_bias", False),
    prefix=f"{prefix}.mlp",
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

self_attn instance-attribute

self_attn = DeciLMAttention(
    config=config,
    hidden_size=hidden_size,
    num_heads=num_attention_heads,
    num_kv_heads=num_kv_heads,
    rope_theta=rope_theta,
    rope_scaling=rope_scaling,
    max_position_embeddings=max_position_embeddings,
    quant_config=quant_config,
    bias=attention_bias,
    bias_o_proj=bias_o_proj,
    cache_config=cache_config,
    prefix=f"{prefix}.self_attn",
)

__init__

__init__(
    config: LlamaConfig,
    layer_idx: int,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/nemotron_nas.py
def __init__(
    self,
    config: LlamaConfig,
    layer_idx: int,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    block_config = config.block_configs[layer_idx]
    self._is_no_op_attention = block_config.attention.no_op
    self._is_no_op_ffn = block_config.ffn.no_op

    self.hidden_size = config.hidden_size
    rope_theta = getattr(config, "rope_theta", 10000)
    rope_scaling = getattr(config, "rope_scaling", None)
    if rope_scaling is not None and getattr(
            config, "original_max_position_embeddings", None):
        rope_scaling["original_max_position_embeddings"] = (
            config.original_max_position_embeddings)
    max_position_embeddings = getattr(config, "max_position_embeddings",
                                      8192)
    # Support abacusai/Smaug-72B-v0.1 with attention_bias
    # Support internlm/internlm-7b with bias
    attention_bias = getattr(config, "attention_bias", False) or getattr(
        config, "bias", False)
    bias_o_proj = attention_bias
    # support internlm/internlm3-8b with qkv_bias
    if hasattr(config, "qkv_bias"):
        attention_bias = config.qkv_bias

    if not self._is_no_op_attention:
        num_kv_heads = (config.num_attention_heads //
                        block_config.attention.n_heads_in_group)
        self.self_attn = DeciLMAttention(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=num_kv_heads,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            bias=attention_bias,
            bias_o_proj=bias_o_proj,
            cache_config=cache_config,
            prefix=f"{prefix}.self_attn",
        )
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)

    if not self._is_no_op_ffn:
        ffn_mult = block_config.ffn.ffn_mult
        intermediate_size = _ffn_mult_to_intermediate_size(
            ffn_mult, config.hidden_size)

        self.mlp = LlamaMLP(
            hidden_size=self.hidden_size,
            intermediate_size=intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            bias=getattr(config, "mlp_bias", False),
            prefix=f"{prefix}.mlp",
        )
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/nemotron_nas.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
    # Self Attention

    if self._is_no_op_attention:
        pass
    else:
        if (residual is None):
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )

    # Fully Connected
    if not self._is_no_op_ffn:
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
    return hidden_states, residual

DeciLMForCausalLM

Bases: Module, SupportsLoRA, SupportsPP, HasNoOps

Source code in vllm/model_executor/models/nemotron_nas.py
class DeciLMForCausalLM(nn.Module, SupportsLoRA, SupportsPP, HasNoOps):
    packed_modules_mapping = {
        "qkv_proj": ["q_proj", "k_proj", "v_proj"],
        "gate_up_proj": ["gate_proj", "up_proj"],
    }

    # LoRA specific attributes
    embedding_modules = {
        "embed_tokens": "input_embeddings",
        "lm_head": "output_embeddings",
    }
    embedding_padding_modules = ["lm_head"]

    # Mistral/Llama models can also be loaded with --load-format mistral
    # from consolidated.safetensors checkpoints
    mistral_mapping = {
        "layers": "model.layers",
        "attention": "self_attn",
        "wq": "q_proj",
        "wk": "k_proj",
        "wv": "v_proj",
        "wo": "o_proj",
        "attention_norm": "input_layernorm",
        "feed_forward": "mlp",
        "w1": "gate_proj",
        "w2": "down_proj",
        "w3": "up_proj",
        "ffn_norm": "post_attention_layernorm",
        "tok_embeddings": "model.embed_tokens",
        "output": "lm_head",
        "norm": "model.norm",
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config
        self.config = config
        self.lora_config = lora_config

        self.model = self._init_model(vllm_config=vllm_config,
                                      prefix=maybe_prefix(prefix, "model"))

        if get_pp_group().is_last_rank:
            self.unpadded_vocab_size = config.vocab_size
            if lora_config:
                self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
            self.lm_head = ParallelLMHead(
                self.unpadded_vocab_size,
                config.hidden_size,
                org_num_embeddings=config.vocab_size,
                padding_size=(
                    DEFAULT_VOCAB_PADDING_SIZE
                    # We need bigger padding if using lora for kernel
                    # compatibility
                    if not lora_config else
                    lora_config.lora_vocab_padding_size),
                quant_config=quant_config,
                prefix=maybe_prefix(prefix, "lm_head"),
            )
            if config.tie_word_embeddings:
                self.lm_head = self.lm_head.tie_weights(
                    self.model.embed_tokens)

            logit_scale = getattr(config, "logit_scale", 1.0)
            self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                                    config.vocab_size,
                                                    logit_scale)
        else:
            self.lm_head = PPMissingLayer()

        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def _init_model(self, vllm_config: VllmConfig, prefix: str = ""):
        return DeciModel(vllm_config=vllm_config, prefix=prefix)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        model_output = self.model(input_ids, positions, intermediate_tensors,
                                  inputs_embeds)
        return model_output

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(
            self,
            skip_prefixes=(["lm_head."]
                           if self.config.tie_word_embeddings else None),
        )
        return loader.load_weights(weights)

config instance-attribute

config = config

embedding_modules class-attribute instance-attribute

embedding_modules = {
    "embed_tokens": "input_embeddings",
    "lm_head": "output_embeddings",
}

embedding_padding_modules class-attribute instance-attribute

embedding_padding_modules = ['lm_head']

lm_head instance-attribute

lm_head = ParallelLMHead(
    unpadded_vocab_size,
    hidden_size,
    org_num_embeddings=vocab_size,
    padding_size=DEFAULT_VOCAB_PADDING_SIZE
    if not lora_config
    else lora_vocab_padding_size,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "lm_head"),
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(
    unpadded_vocab_size, vocab_size, logit_scale
)

lora_config instance-attribute

lora_config = lora_config

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

mistral_mapping class-attribute instance-attribute

mistral_mapping = {
    "layers": "model.layers",
    "attention": "self_attn",
    "wq": "q_proj",
    "wk": "k_proj",
    "wv": "v_proj",
    "wo": "o_proj",
    "attention_norm": "input_layernorm",
    "feed_forward": "mlp",
    "w1": "gate_proj",
    "w2": "down_proj",
    "w3": "up_proj",
    "ffn_norm": "post_attention_layernorm",
    "tok_embeddings": "model.embed_tokens",
    "output": "lm_head",
    "norm": "model.norm",
}

model instance-attribute

model = _init_model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

unpadded_vocab_size instance-attribute

unpadded_vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/nemotron_nas.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config
    self.config = config
    self.lora_config = lora_config

    self.model = self._init_model(vllm_config=vllm_config,
                                  prefix=maybe_prefix(prefix, "model"))

    if get_pp_group().is_last_rank:
        self.unpadded_vocab_size = config.vocab_size
        if lora_config:
            self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
        self.lm_head = ParallelLMHead(
            self.unpadded_vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            padding_size=(
                DEFAULT_VOCAB_PADDING_SIZE
                # We need bigger padding if using lora for kernel
                # compatibility
                if not lora_config else
                lora_config.lora_vocab_padding_size),
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "lm_head"),
        )
        if config.tie_word_embeddings:
            self.lm_head = self.lm_head.tie_weights(
                self.model.embed_tokens)

        logit_scale = getattr(config, "logit_scale", 1.0)
        self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                                config.vocab_size,
                                                logit_scale)
    else:
        self.lm_head = PPMissingLayer()

    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

_init_model

_init_model(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/nemotron_nas.py
def _init_model(self, vllm_config: VllmConfig, prefix: str = ""):
    return DeciModel(vllm_config=vllm_config, prefix=prefix)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/nemotron_nas.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/nemotron_nas.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    model_output = self.model(input_ids, positions, intermediate_tensors,
                              inputs_embeds)
    return model_output

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/nemotron_nas.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/nemotron_nas.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(
        self,
        skip_prefixes=(["lm_head."]
                       if self.config.tie_word_embeddings else None),
    )
    return loader.load_weights(weights)

DeciModel

Bases: Module

Source code in vllm/model_executor/models/nemotron_nas.py
@support_torch_compile
class DeciModel(nn.Module):

    def __init__(
        self,
        *,
        vllm_config: VllmConfig,
        prefix: str = "",
        layer_type: type[DeciLMDecoderLayer] = DeciLMDecoderLayer,
    ):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        self.quant_config = quant_config
        self.padding_idx = config.pad_token_id
        lora_vocab = ((lora_config.lora_extra_vocab_size *
                       (lora_config.max_loras or 1)) if lora_config else 0)
        self.vocab_size = config.vocab_size + lora_vocab
        self.org_vocab_size = config.vocab_size
        if get_pp_group().is_first_rank or (config.tie_word_embeddings
                                            and get_pp_group().is_last_rank):
            self.embed_tokens = VocabParallelEmbedding(
                self.vocab_size,
                config.hidden_size,
                org_num_embeddings=config.vocab_size,
                quant_config=quant_config,
            )
        else:
            self.embed_tokens = PPMissingLayer()

        def get_layer(prefix: str):
            layer_idx = int(prefix.rsplit(".", 1)[1])
            return layer_type(
                config,
                layer_idx,
                cache_config,
                quant_config=quant_config,
                prefix=prefix,
            )

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            get_layer,
            prefix=f"{prefix}.layers",
        )
        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer()

        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: Optional[torch.Tensor],
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        kv_cache_index = 0
        for i in range(self.start_layer, self.end_layer):
            layer = self.layers[i]
            if not layer._is_no_op_attention:
                hidden_states, residual = layer(positions, hidden_states,
                                                residual)
                kv_cache_index += 1
            else:
                hidden_states, residual = layer(positions, hidden_states,
                                                residual)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })

        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            (".qkv_proj", ".q_proj", "q"),
            (".qkv_proj", ".k_proj", "k"),
            (".qkv_proj", ".v_proj", "v"),
            (".gate_up_proj", ".gate_proj", 0),
            (".gate_up_proj", ".up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            if ("rotary_emb.cos_cached" in name
                    or "rotary_emb.sin_cached" in name):
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
            if self.quant_config is not None and (
                    scale_name := self.quant_config.get_cache_scale(name)):
                # Loading kv cache quantization scales
                param = params_dict[scale_name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
                                 loaded_weight[0])
                weight_loader(param, loaded_weight)
                loaded_params.add(scale_name)
                continue
            if "scale" in name:
                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                if is_pp_missing_parameter(name, self):
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                if is_pp_missing_parameter(name, self):
                    continue

                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size,
    hidden_size,
    org_num_embeddings=vocab_size,
    quant_config=quant_config,
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states", "residual"], hidden_size
    )
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

org_vocab_size instance-attribute

org_vocab_size = vocab_size

padding_idx instance-attribute

padding_idx = pad_token_id

quant_config instance-attribute

quant_config = quant_config

vocab_size instance-attribute

vocab_size = vocab_size + lora_vocab

__init__

__init__(
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    layer_type: type[
        DeciLMDecoderLayer
    ] = DeciLMDecoderLayer,
)
Source code in vllm/model_executor/models/nemotron_nas.py
def __init__(
    self,
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    layer_type: type[DeciLMDecoderLayer] = DeciLMDecoderLayer,
):
    super().__init__()

    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config

    self.config = config
    self.quant_config = quant_config
    self.padding_idx = config.pad_token_id
    lora_vocab = ((lora_config.lora_extra_vocab_size *
                   (lora_config.max_loras or 1)) if lora_config else 0)
    self.vocab_size = config.vocab_size + lora_vocab
    self.org_vocab_size = config.vocab_size
    if get_pp_group().is_first_rank or (config.tie_word_embeddings
                                        and get_pp_group().is_last_rank):
        self.embed_tokens = VocabParallelEmbedding(
            self.vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            quant_config=quant_config,
        )
    else:
        self.embed_tokens = PPMissingLayer()

    def get_layer(prefix: str):
        layer_idx = int(prefix.rsplit(".", 1)[1])
        return layer_type(
            config,
            layer_idx,
            cache_config,
            quant_config=quant_config,
            prefix=prefix,
        )

    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        get_layer,
        prefix=f"{prefix}.layers",
    )
    if get_pp_group().is_last_rank:
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    else:
        self.norm = PPMissingLayer()

    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], config.hidden_size))

forward

forward(
    input_ids: Optional[Tensor],
    positions: Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/nemotron_nas.py
def forward(
    self,
    input_ids: Optional[torch.Tensor],
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]

    kv_cache_index = 0
    for i in range(self.start_layer, self.end_layer):
        layer = self.layers[i]
        if not layer._is_no_op_attention:
            hidden_states, residual = layer(positions, hidden_states,
                                            residual)
            kv_cache_index += 1
        else:
            hidden_states, residual = layer(positions, hidden_states,
                                            residual)

    if not get_pp_group().is_last_rank:
        return IntermediateTensors({
            "hidden_states": hidden_states,
            "residual": residual
        })

    hidden_states, _ = self.norm(hidden_states, residual)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/nemotron_nas.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/nemotron_nas.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        (".qkv_proj", ".q_proj", "q"),
        (".qkv_proj", ".k_proj", "k"),
        (".qkv_proj", ".v_proj", "v"),
        (".gate_up_proj", ".gate_proj", 0),
        (".gate_up_proj", ".up_proj", 1),
    ]
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue
        if ("rotary_emb.cos_cached" in name
                or "rotary_emb.sin_cached" in name):
            # Models trained using ColossalAI may include these tensors in
            # the checkpoint. Skip them.
            continue
        if self.quant_config is not None and (
                scale_name := self.quant_config.get_cache_scale(name)):
            # Loading kv cache quantization scales
            param = params_dict[scale_name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
                             loaded_weight[0])
            weight_loader(param, loaded_weight)
            loaded_params.add(scale_name)
            continue
        if "scale" in name:
            # Remapping the name of FP8 kv-scale.
            name = maybe_remap_kv_scale_name(name, params_dict)
            if name is None:
                continue
        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue

            if is_pp_missing_parameter(name, self):
                continue

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue

            if is_pp_missing_parameter(name, self):
                continue

            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

_ffn_mult_to_intermediate_size

_ffn_mult_to_intermediate_size(
    ffn_mult: float, n_embd: int
) -> int
Source code in vllm/model_executor/models/nemotron_nas.py
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
    # DeciLM-specific code
    intermediate_size = int(2 * ffn_mult * n_embd / 3)
    return _find_multiple(intermediate_size, 256)

_find_multiple

_find_multiple(n: int, k: int) -> int
Source code in vllm/model_executor/models/nemotron_nas.py
def _find_multiple(n: int, k: int) -> int:
    # DeciLM-specific code
    if n % k == 0:
        return n
    return n + k - (n % k)