Skip to content

vllm.model_executor.models.starcoder2

PyTorch Starcoder2 model.

Starcoder2Attention

Bases: Module

Source code in vllm/model_executor/models/starcoder2.py
class Starcoder2Attention(nn.Module):

    def __init__(self,
                 config: Starcoder2Config,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__()
        self.config = config

        self.hidden_size = config.hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = config.num_attention_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = config.num_key_value_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = self.hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = config.rope_theta
        self.max_position_embeddings = config.max_position_embeddings
        self.use_bias = config.use_bias

        self.qkv_proj = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=self.use_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            self.hidden_size,
            bias=self.use_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.o_proj",
        )
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=self.max_position_embeddings,
            base=int(self.rope_theta),
            is_neox_style=True,
        )
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              self.scaling,
                              num_kv_heads=self.num_kv_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

config instance-attribute

config = config

head_dim instance-attribute

head_dim = hidden_size // total_num_heads

hidden_size instance-attribute

hidden_size = hidden_size

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=use_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_size instance-attribute

q_size = num_heads * head_dim

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    total_num_kv_heads,
    bias=use_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position_embeddings,
    base=int(rope_theta),
    is_neox_style=True,
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_attention_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = num_key_value_heads

use_bias instance-attribute

use_bias = use_bias

__init__

__init__(
    config: Starcoder2Config,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/starcoder2.py
def __init__(self,
             config: Starcoder2Config,
             cache_config: Optional[CacheConfig] = None,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = ""):
    super().__init__()
    self.config = config

    self.hidden_size = config.hidden_size
    tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = config.num_attention_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    self.total_num_kv_heads = config.num_key_value_heads
    if self.total_num_kv_heads >= tp_size:
        # Number of KV heads is greater than TP size, so we partition
        # the KV heads across multiple tensor parallel GPUs.
        assert self.total_num_kv_heads % tp_size == 0
    else:
        # Number of KV heads is less than TP size, so we replicate
        # the KV heads across multiple tensor parallel GPUs.
        assert tp_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
    self.head_dim = self.hidden_size // self.total_num_heads
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scaling = self.head_dim**-0.5
    self.rope_theta = config.rope_theta
    self.max_position_embeddings = config.max_position_embeddings
    self.use_bias = config.use_bias

    self.qkv_proj = QKVParallelLinear(
        self.hidden_size,
        self.head_dim,
        self.total_num_heads,
        self.total_num_kv_heads,
        bias=self.use_bias,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )
    self.o_proj = RowParallelLinear(
        self.total_num_heads * self.head_dim,
        self.hidden_size,
        bias=self.use_bias,
        quant_config=quant_config,
        prefix=f"{prefix}.o_proj",
    )
    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=self.max_position_embeddings,
        base=int(self.rope_theta),
        is_neox_style=True,
    )
    self.attn = Attention(self.num_heads,
                          self.head_dim,
                          self.scaling,
                          num_kv_heads=self.num_kv_heads,
                          cache_config=cache_config,
                          quant_config=quant_config,
                          prefix=f"{prefix}.attn")

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/starcoder2.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

Starcoder2DecoderLayer

Bases: Module

Source code in vllm/model_executor/models/starcoder2.py
class Starcoder2DecoderLayer(nn.Module):

    def __init__(self,
                 config: Starcoder2Config,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = Starcoder2Attention(config,
                                             cache_config,
                                             quant_config=quant_config,
                                             prefix=f"{prefix}.self_attn")
        self.mlp = Starcoder2MLP(config,
                                 quant_config=quant_config,
                                 prefix=f"{prefix}.mlp")
        self.input_layernorm = nn.LayerNorm(config.hidden_size,
                                            eps=config.norm_epsilon)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
                                                     eps=config.norm_epsilon)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = LayerNorm(hidden_size, eps=norm_epsilon)

mlp instance-attribute

mlp = Starcoder2MLP(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

post_attention_layernorm instance-attribute

post_attention_layernorm = LayerNorm(
    hidden_size, eps=norm_epsilon
)

self_attn instance-attribute

self_attn = Starcoder2Attention(
    config,
    cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
)

__init__

__init__(
    config: Starcoder2Config,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/starcoder2.py
def __init__(self,
             config: Starcoder2Config,
             cache_config: Optional[CacheConfig] = None,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = ""):
    super().__init__()
    self.hidden_size = config.hidden_size
    self.self_attn = Starcoder2Attention(config,
                                         cache_config,
                                         quant_config=quant_config,
                                         prefix=f"{prefix}.self_attn")
    self.mlp = Starcoder2MLP(config,
                             quant_config=quant_config,
                             prefix=f"{prefix}.mlp")
    self.input_layernorm = nn.LayerNorm(config.hidden_size,
                                        eps=config.norm_epsilon)
    self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
                                                 eps=config.norm_epsilon)

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/starcoder2.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    # Self Attention
    residual = hidden_states
    hidden_states = self.input_layernorm(hidden_states)
    hidden_states = self.self_attn(
        positions=positions,
        hidden_states=hidden_states,
    )
    hidden_states = residual + hidden_states

    # Fully Connected
    residual = hidden_states
    hidden_states = self.post_attention_layernorm(hidden_states)
    hidden_states = self.mlp(hidden_states)
    hidden_states = residual + hidden_states

    return hidden_states

Starcoder2ForCausalLM

Bases: Module, SupportsPP

Source code in vllm/model_executor/models/starcoder2.py
class Starcoder2ForCausalLM(nn.Module, SupportsPP):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config
        self.model = Starcoder2Model(vllm_config=vllm_config,
                                     prefix=maybe_prefix(prefix, "model"))
        self.vocab_size = config.vocab_size
        self.unpadded_vocab_size = config.vocab_size
        if config.tie_word_embeddings:
            self.lm_head = self.model.embed_tokens
        else:
            self.unpadded_vocab_size = config.vocab_size
            self.lm_head = ParallelLMHead(
                self.unpadded_vocab_size,
                config.hidden_size,
                org_num_embeddings=config.vocab_size,
                padding_size=DEFAULT_VOCAB_PADDING_SIZE,
                quant_config=quant_config,
                prefix=f"{prefix}.lm_head",
            )
        self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                                config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, intermediate_tensors,
                                   inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(
            self,
            # Models trained using ColossalAI may include these tensors in
            # the checkpoint. Skip them.
            skip_prefixes=(["lm_head.weight"]
                           if self.config.tie_word_embeddings else None),
        )
        return loader.load_weights(weights)

config instance-attribute

config = config

lm_head instance-attribute

lm_head = embed_tokens

logits_processor instance-attribute

logits_processor = LogitsProcessor(
    unpadded_vocab_size, vocab_size
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = Starcoder2Model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

unpadded_vocab_size instance-attribute

unpadded_vocab_size = vocab_size

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/starcoder2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.config = config
    self.model = Starcoder2Model(vllm_config=vllm_config,
                                 prefix=maybe_prefix(prefix, "model"))
    self.vocab_size = config.vocab_size
    self.unpadded_vocab_size = config.vocab_size
    if config.tie_word_embeddings:
        self.lm_head = self.model.embed_tokens
    else:
        self.unpadded_vocab_size = config.vocab_size
        self.lm_head = ParallelLMHead(
            self.unpadded_vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            padding_size=DEFAULT_VOCAB_PADDING_SIZE,
            quant_config=quant_config,
            prefix=f"{prefix}.lm_head",
        )
    self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                            config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/starcoder2.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/starcoder2.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    hidden_states = self.model(input_ids, positions, intermediate_tensors,
                               inputs_embeds)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/starcoder2.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/starcoder2.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(
        self,
        # Models trained using ColossalAI may include these tensors in
        # the checkpoint. Skip them.
        skip_prefixes=(["lm_head.weight"]
                       if self.config.tie_word_embeddings else None),
    )
    return loader.load_weights(weights)

Starcoder2MLP

Bases: Module

Source code in vllm/model_executor/models/starcoder2.py
class Starcoder2MLP(nn.Module):

    def __init__(self,
                 config: Starcoder2Config,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__()
        self.c_fc = ColumnParallelLinear(
            config.hidden_size,
            config.intermediate_size,
            bias=config.use_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.c_fc",
        )
        self.c_proj = RowParallelLinear(
            config.intermediate_size,
            config.hidden_size,
            bias=config.use_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.c_proj",
        )
        self.act = get_act_fn(config.hidden_act)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.c_proj(hidden_states)
        return hidden_states

act instance-attribute

act = get_act_fn(hidden_act)

c_fc instance-attribute

c_fc = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    bias=use_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.c_fc",
)

c_proj instance-attribute

c_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=use_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.c_proj",
)

__init__

__init__(
    config: Starcoder2Config,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/starcoder2.py
def __init__(self,
             config: Starcoder2Config,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = ""):
    super().__init__()
    self.c_fc = ColumnParallelLinear(
        config.hidden_size,
        config.intermediate_size,
        bias=config.use_bias,
        quant_config=quant_config,
        prefix=f"{prefix}.c_fc",
    )
    self.c_proj = RowParallelLinear(
        config.intermediate_size,
        config.hidden_size,
        bias=config.use_bias,
        quant_config=quant_config,
        prefix=f"{prefix}.c_proj",
    )
    self.act = get_act_fn(config.hidden_act)

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/starcoder2.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    hidden_states, _ = self.c_fc(hidden_states)
    hidden_states = self.act(hidden_states)
    hidden_states, _ = self.c_proj(hidden_states)
    return hidden_states

Starcoder2Model

Bases: Module

Source code in vllm/model_executor/models/starcoder2.py
@support_torch_compile
class Starcoder2Model(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config

        self.config = config
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=f"{prefix}.embed_tokens")
        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: Starcoder2DecoderLayer(
                config, cache_config, quant_config=quant_config, prefix=prefix
            ),
            prefix=f"{prefix}.layers",
        )
        self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(["hidden_states"],
                                                    config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
        for layer in self.layers[self.start_layer:self.end_layer]:
            hidden_states = layer(positions, hidden_states)
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({"hidden_states": hidden_states})
        hidden_states = self.norm(hidden_states)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]

        params_dict = dict(self.named_parameters(remove_duplicate=False))
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size,
    hidden_size,
    quant_config=quant_config,
    prefix=f"{prefix}.embed_tokens",
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states"], hidden_size
    )
)

norm instance-attribute

norm = LayerNorm(hidden_size, eps=norm_epsilon)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/starcoder2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config

    self.config = config
    self.vocab_size = config.vocab_size

    self.embed_tokens = VocabParallelEmbedding(
        config.vocab_size,
        config.hidden_size,
        quant_config=quant_config,
        prefix=f"{prefix}.embed_tokens")
    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: Starcoder2DecoderLayer(
            config, cache_config, quant_config=quant_config, prefix=prefix
        ),
        prefix=f"{prefix}.layers",
    )
    self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(["hidden_states"],
                                                config.hidden_size))

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/starcoder2.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
    for layer in self.layers[self.start_layer:self.end_layer]:
        hidden_states = layer(positions, hidden_states)
    if not get_pp_group().is_last_rank:
        return IntermediateTensors({"hidden_states": hidden_states})
    hidden_states = self.norm(hidden_states)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/starcoder2.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/starcoder2.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]

    params_dict = dict(self.named_parameters(remove_duplicate=False))
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            name = maybe_remap_kv_scale_name(name, params_dict)
            if name is None:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params