Skip to content

vllm.model_executor.models.bamba

Inference-only Bamba model.

ALL_DECODER_LAYER_TYPES module-attribute

ALL_DECODER_LAYER_TYPES = {
    "attention": BambaAttentionDecoderLayer,
    "mamba": BambaMixerDecoderLayer,
}

BambaAttentionDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/bamba.py
class BambaAttentionDecoderLayer(nn.Module):

    def __init__(
        self,
        config: BambaConfig,
        layer_idx: int,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
        self.hidden_size = config.hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = config.num_attention_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = config.num_key_value_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = config.hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        if hasattr(config, "partial_rotary_factor"):
            rotary_dim = self.head_dim * config.partial_rotary_factor
        elif hasattr(config, "attn_rotary_emb"):
            rotary_dim = config.attn_rotary_emb  # for backward compatibility
        else:
            rotary_dim = self.head_dim  # default

        self.rotary_emb = get_rope(
            head_size=self.head_dim,
            rotary_dim=rotary_dim,
            max_position=max_position_embeddings,
            rope_scaling=rope_scaling,
            base=rope_theta,
            is_neox_style=True,
            dtype=torch.get_default_dtype(),  # see impl of get_rope
        )

        self.qkv_proj = QKVParallelLinear(
            config.hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
            quant_config=quant_config,
        )
        self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                        config.hidden_size,
                                        bias=False,
                                        quant_config=quant_config)

        self.attn = Attention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            cache_config=cache_config,
            prefix=f"{prefix}.attn",
        )

        self.feed_forward = BambaMLP(config, quant_config=quant_config)
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.pre_ff_layernorm = RMSNorm(config.hidden_size,
                                        eps=config.rms_norm_eps)

    def self_attention(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        **kwargs,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)

        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
        **kwargs,
    ):
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)

        hidden_states = self.self_attention(
            positions=positions,
            hidden_states=hidden_states,
        )
        # Fully Connected
        hidden_states, residual = self.pre_ff_layernorm(
            hidden_states, residual)
        hidden_states = self.feed_forward(hidden_states)
        return hidden_states, residual

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    prefix=f"{prefix}.attn",
)

feed_forward instance-attribute

feed_forward = BambaMLP(config, quant_config=quant_config)

head_dim instance-attribute

head_dim = hidden_size // total_num_heads

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
)

pre_ff_layernorm instance-attribute

pre_ff_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

q_size instance-attribute

q_size = num_heads * head_dim

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    total_num_kv_heads,
    bias=False,
    quant_config=quant_config,
)

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_size=head_dim,
    rotary_dim=rotary_dim,
    max_position=max_position_embeddings,
    rope_scaling=rope_scaling,
    base=rope_theta,
    is_neox_style=True,
    dtype=get_default_dtype(),
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_attention_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = num_key_value_heads

__init__

__init__(
    config: BambaConfig,
    layer_idx: int,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/bamba.py
def __init__(
    self,
    config: BambaConfig,
    layer_idx: int,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    rope_theta = getattr(config, "rope_theta", 10000)
    rope_scaling = getattr(config, "rope_scaling", None)
    max_position_embeddings = getattr(config, "max_position_embeddings",
                                      8192)
    self.hidden_size = config.hidden_size
    tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = config.num_attention_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    self.total_num_kv_heads = config.num_key_value_heads
    if self.total_num_kv_heads >= tp_size:
        # Number of KV heads is greater than TP size, so we partition
        # the KV heads across multiple tensor parallel GPUs.
        assert self.total_num_kv_heads % tp_size == 0
    else:
        # Number of KV heads is less than TP size, so we replicate
        # the KV heads across multiple tensor parallel GPUs.
        assert tp_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
    self.head_dim = config.hidden_size // self.total_num_heads
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scaling = self.head_dim**-0.5
    self.rope_theta = rope_theta
    self.max_position_embeddings = max_position_embeddings

    if hasattr(config, "partial_rotary_factor"):
        rotary_dim = self.head_dim * config.partial_rotary_factor
    elif hasattr(config, "attn_rotary_emb"):
        rotary_dim = config.attn_rotary_emb  # for backward compatibility
    else:
        rotary_dim = self.head_dim  # default

    self.rotary_emb = get_rope(
        head_size=self.head_dim,
        rotary_dim=rotary_dim,
        max_position=max_position_embeddings,
        rope_scaling=rope_scaling,
        base=rope_theta,
        is_neox_style=True,
        dtype=torch.get_default_dtype(),  # see impl of get_rope
    )

    self.qkv_proj = QKVParallelLinear(
        config.hidden_size,
        self.head_dim,
        self.total_num_heads,
        self.total_num_kv_heads,
        bias=False,
        quant_config=quant_config,
    )
    self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                    config.hidden_size,
                                    bias=False,
                                    quant_config=quant_config)

    self.attn = Attention(
        self.num_heads,
        self.head_dim,
        self.scaling,
        num_kv_heads=self.num_kv_heads,
        cache_config=cache_config,
        prefix=f"{prefix}.attn",
    )

    self.feed_forward = BambaMLP(config, quant_config=quant_config)
    self.input_layernorm = RMSNorm(config.hidden_size,
                                   eps=config.rms_norm_eps)
    self.pre_ff_layernorm = RMSNorm(config.hidden_size,
                                    eps=config.rms_norm_eps)

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
    **kwargs,
)
Source code in vllm/model_executor/models/bamba.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
    **kwargs,
):
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(
            hidden_states, residual)

    hidden_states = self.self_attention(
        positions=positions,
        hidden_states=hidden_states,
    )
    # Fully Connected
    hidden_states, residual = self.pre_ff_layernorm(
        hidden_states, residual)
    hidden_states = self.feed_forward(hidden_states)
    return hidden_states, residual

self_attention

self_attention(
    positions: Tensor, hidden_states: Tensor, **kwargs
) -> Tensor
Source code in vllm/model_executor/models/bamba.py
def self_attention(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    **kwargs,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)

    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

BambaForCausalLM

Bases: Module, HasInnerState, SupportsLoRA, SupportsPP, IsHybrid, SupportsQuant

Source code in vllm/model_executor/models/bamba.py
class BambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
                       IsHybrid, SupportsQuant):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": ["up_proj", "down_proj"]
    }

    # LoRA specific attributes
    embedding_modules = {
        "embed_tokens": "input_embeddings",
        "lm_head": "output_embeddings",
    }
    embedding_padding_modules = ["lm_head"]

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        config = vllm_config.model_config.hf_config
        self.vllm_config = vllm_config
        self.model_config = vllm_config.model_config
        cache_config = vllm_config.cache_config
        lora_config = vllm_config.lora_config
        scheduler_config = vllm_config.scheduler_config
        assert not cache_config.enable_prefix_caching, \
            "Bamba currently does not support prefix caching"

        self.quant_config = vllm_config.quant_config

        super().__init__()
        self.config = config
        self.scheduler_config = scheduler_config
        self.model = BambaModel(vllm_config=vllm_config,
                                prefix=maybe_prefix(prefix, "model"))
        self.unpadded_vocab_size = config.vocab_size
        if lora_config:
            self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
        self.lm_head = ParallelLMHead(
            self.unpadded_vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            padding_size=DEFAULT_VOCAB_PADDING_SIZE
            # We need bigger padding if using lora for kernel
            # compatibility
            if not lora_config else lora_config.lora_vocab_padding_size,
        )
        # Used to track and store by the Mamba cache between steps.
        self.mamba_cache: Optional[MambaCacheManager] = None

        self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                                config.vocab_size)

        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(self,
                input_ids: torch.Tensor,
                positions: torch.Tensor,
                intermediate_tensors: Optional[IntermediateTensors] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                **kwargs):

        mamba_cache_params = None
        if not envs.VLLM_USE_V1:
            if self.mamba_cache is None:
                num_mamba_layers = \
                    self.model_config.get_num_layers_by_block_type(
                        self.vllm_config.parallel_config,
                        LayerBlockType.mamba
                    )

                self.mamba_cache = MambaCacheManager(
                    self.vllm_config, self.lm_head.weight.dtype,
                    num_mamba_layers, *self._get_mamba_cache_shape())

            mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)

        hidden_states = self.model(input_ids, positions, mamba_cache_params,
                                   intermediate_tensors, inputs_embeds)

        return hidden_states

    def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
        return self.mamba_cache.copy_inputs_before_cuda_graphs(
            input_buffers, **kwargs)

    def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
        return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)

    def _get_mamba_cache_shape(
            self) -> tuple[tuple[int, int], tuple[int, int]]:
        world_size = get_tensor_model_parallel_world_size()
        hidden_size = self.config.hidden_size

        conv_state_shape, temporal_state_shape = None, None

        intermediate_size = self.config.mamba_expand * hidden_size

        # if n_groups is not divisible by world_size, need to extend the shards
        # to ensure all groups needed by a head is sharded along with it
        n_groups = (self.config.mamba_n_groups + extra_groups_for_head_shards(
            self.config.mamba_n_groups, world_size))

        # - heads and n_groups are TP-ed
        conv_dim = (intermediate_size +
                    2 * n_groups * self.config.mamba_d_state)
        conv_state_shape = (
            divide(conv_dim, world_size),
            self.config.mamba_d_conv - 1,
        )

        # These are not TP-ed as they depend on A, dt_bias, D
        # - they are typically small
        #   e.g., (h_heads, d_head, d_state) = (128, 64, 128)
        temporal_state_shape = (
            divide(self.config.mamba_n_heads, world_size),
            self.config.mamba_d_head,
            self.config.mamba_d_state,
        )
        return conv_state_shape, temporal_state_shape

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

config instance-attribute

config = config

embedding_modules class-attribute instance-attribute

embedding_modules = {
    "embed_tokens": "input_embeddings",
    "lm_head": "output_embeddings",
}

embedding_padding_modules class-attribute instance-attribute

embedding_padding_modules = ['lm_head']

lm_head instance-attribute

lm_head = ParallelLMHead(
    unpadded_vocab_size,
    hidden_size,
    org_num_embeddings=vocab_size,
    padding_size=DEFAULT_VOCAB_PADDING_SIZE
    if not lora_config
    else lora_vocab_padding_size,
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(
    unpadded_vocab_size, vocab_size
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

mamba_cache instance-attribute

mamba_cache: Optional[MambaCacheManager] = None

model instance-attribute

model = BambaModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

model_config instance-attribute

model_config = model_config

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["up_proj", "down_proj"],
}

quant_config instance-attribute

quant_config = quant_config

scheduler_config instance-attribute

scheduler_config = scheduler_config

unpadded_vocab_size instance-attribute

unpadded_vocab_size = vocab_size

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/bamba.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    config = vllm_config.model_config.hf_config
    self.vllm_config = vllm_config
    self.model_config = vllm_config.model_config
    cache_config = vllm_config.cache_config
    lora_config = vllm_config.lora_config
    scheduler_config = vllm_config.scheduler_config
    assert not cache_config.enable_prefix_caching, \
        "Bamba currently does not support prefix caching"

    self.quant_config = vllm_config.quant_config

    super().__init__()
    self.config = config
    self.scheduler_config = scheduler_config
    self.model = BambaModel(vllm_config=vllm_config,
                            prefix=maybe_prefix(prefix, "model"))
    self.unpadded_vocab_size = config.vocab_size
    if lora_config:
        self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
    self.lm_head = ParallelLMHead(
        self.unpadded_vocab_size,
        config.hidden_size,
        org_num_embeddings=config.vocab_size,
        padding_size=DEFAULT_VOCAB_PADDING_SIZE
        # We need bigger padding if using lora for kernel
        # compatibility
        if not lora_config else lora_config.lora_vocab_padding_size,
    )
    # Used to track and store by the Mamba cache between steps.
    self.mamba_cache: Optional[MambaCacheManager] = None

    self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                            config.vocab_size)

    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

_get_mamba_cache_shape

_get_mamba_cache_shape() -> tuple[
    tuple[int, int], tuple[int, int]
]
Source code in vllm/model_executor/models/bamba.py
def _get_mamba_cache_shape(
        self) -> tuple[tuple[int, int], tuple[int, int]]:
    world_size = get_tensor_model_parallel_world_size()
    hidden_size = self.config.hidden_size

    conv_state_shape, temporal_state_shape = None, None

    intermediate_size = self.config.mamba_expand * hidden_size

    # if n_groups is not divisible by world_size, need to extend the shards
    # to ensure all groups needed by a head is sharded along with it
    n_groups = (self.config.mamba_n_groups + extra_groups_for_head_shards(
        self.config.mamba_n_groups, world_size))

    # - heads and n_groups are TP-ed
    conv_dim = (intermediate_size +
                2 * n_groups * self.config.mamba_d_state)
    conv_state_shape = (
        divide(conv_dim, world_size),
        self.config.mamba_d_conv - 1,
    )

    # These are not TP-ed as they depend on A, dt_bias, D
    # - they are typically small
    #   e.g., (h_heads, d_head, d_state) = (128, 64, 128)
    temporal_state_shape = (
        divide(self.config.mamba_n_heads, world_size),
        self.config.mamba_d_head,
        self.config.mamba_d_state,
    )
    return conv_state_shape, temporal_state_shape

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/bamba.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

copy_inputs_before_cuda_graphs

copy_inputs_before_cuda_graphs(input_buffers, **kwargs)
Source code in vllm/model_executor/models/bamba.py
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
    return self.mamba_cache.copy_inputs_before_cuda_graphs(
        input_buffers, **kwargs)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs,
)
Source code in vllm/model_executor/models/bamba.py
def forward(self,
            input_ids: torch.Tensor,
            positions: torch.Tensor,
            intermediate_tensors: Optional[IntermediateTensors] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            **kwargs):

    mamba_cache_params = None
    if not envs.VLLM_USE_V1:
        if self.mamba_cache is None:
            num_mamba_layers = \
                self.model_config.get_num_layers_by_block_type(
                    self.vllm_config.parallel_config,
                    LayerBlockType.mamba
                )

            self.mamba_cache = MambaCacheManager(
                self.vllm_config, self.lm_head.weight.dtype,
                num_mamba_layers, *self._get_mamba_cache_shape())

        mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)

    hidden_states = self.model(input_ids, positions, mamba_cache_params,
                               intermediate_tensors, inputs_embeds)

    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/bamba.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

get_seqlen_agnostic_capture_inputs

get_seqlen_agnostic_capture_inputs(batch_size: int)
Source code in vllm/model_executor/models/bamba.py
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
    return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/bamba.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

BambaMLP

Bases: Module

Source code in vllm/model_executor/models/bamba.py
class BambaMLP(nn.Module):

    def __init__(
        self,
        config: BambaConfig,
        quant_config: Optional[QuantizationConfig] = None,
        bias: bool = False,
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            input_size=config.hidden_size,
            output_sizes=[config.intermediate_size] * 2,
            bias=bias,
            quant_config=quant_config,
        )
        self.down_proj = RowParallelLinear(
            input_size=config.intermediate_size,
            output_size=config.hidden_size,
            bias=bias,
            quant_config=quant_config,
        )
        if config.hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {config.hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        x, _ = self.gate_up_proj(x)
        x = self.act_fn(x)
        x, _ = self.down_proj(x)
        return x

act_fn instance-attribute

act_fn = SiluAndMul()

down_proj instance-attribute

down_proj = RowParallelLinear(
    input_size=intermediate_size,
    output_size=hidden_size,
    bias=bias,
    quant_config=quant_config,
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    input_size=hidden_size,
    output_sizes=[intermediate_size] * 2,
    bias=bias,
    quant_config=quant_config,
)

__init__

__init__(
    config: BambaConfig,
    quant_config: Optional[QuantizationConfig] = None,
    bias: bool = False,
) -> None
Source code in vllm/model_executor/models/bamba.py
def __init__(
    self,
    config: BambaConfig,
    quant_config: Optional[QuantizationConfig] = None,
    bias: bool = False,
) -> None:
    super().__init__()
    self.gate_up_proj = MergedColumnParallelLinear(
        input_size=config.hidden_size,
        output_sizes=[config.intermediate_size] * 2,
        bias=bias,
        quant_config=quant_config,
    )
    self.down_proj = RowParallelLinear(
        input_size=config.intermediate_size,
        output_size=config.hidden_size,
        bias=bias,
        quant_config=quant_config,
    )
    if config.hidden_act != "silu":
        raise ValueError(f"Unsupported activation: {config.hidden_act}. "
                         "Only silu is supported for now.")
    self.act_fn = SiluAndMul()

forward

forward(x)
Source code in vllm/model_executor/models/bamba.py
def forward(self, x):
    x, _ = self.gate_up_proj(x)
    x = self.act_fn(x)
    x, _ = self.down_proj(x)
    return x

BambaMixerDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/bamba.py
class BambaMixerDecoderLayer(nn.Module):

    def __init__(self,
                 config: BambaConfig,
                 layer_idx: int,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = "") -> None:
        super().__init__()
        self.config = config
        self.mamba = MambaMixer2(hidden_size= config.hidden_size,
                                ssm_state_size = config.mamba_d_state,
                                conv_kernel_size = config.mamba_d_conv,
                                intermediate_size = config.mamba_expand *\
                                                    config.hidden_size,
                                use_conv_bias = config.mamba_conv_bias,
                                use_bias = config.mamba_proj_bias,
                                n_groups=config.mamba_n_groups,
                                num_heads=config.mamba_n_heads,
                                head_dim=config.mamba_d_head,
                                rms_norm_eps=config.rms_norm_eps,
                                activation=config.hidden_act,
                                quant_config=quant_config,
                                prefix=f"{prefix}.mixer",
                                chunk_size=config.mamba_chunk_size)

        self.feed_forward = BambaMLP(config, quant_config=quant_config)
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.pre_ff_layernorm = RMSNorm(config.hidden_size,
                                        eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
        mamba_cache_params: MambaCacheParams,
        mamba2_metadata: Mamba2Metadata,
        **kwargs,
    ):
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)

        hidden_states = self.mamba(hidden_states, mamba_cache_params,
                                   mamba2_metadata)
        # Fully Connected
        hidden_states, residual = self.pre_ff_layernorm(
            hidden_states, residual)
        hidden_states = self.feed_forward(hidden_states)
        return hidden_states, residual

config instance-attribute

config = config

feed_forward instance-attribute

feed_forward = BambaMLP(config, quant_config=quant_config)

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

mamba instance-attribute

mamba = MambaMixer2(
    hidden_size=hidden_size,
    ssm_state_size=mamba_d_state,
    conv_kernel_size=mamba_d_conv,
    intermediate_size=mamba_expand * hidden_size,
    use_conv_bias=mamba_conv_bias,
    use_bias=mamba_proj_bias,
    n_groups=mamba_n_groups,
    num_heads=mamba_n_heads,
    head_dim=mamba_d_head,
    rms_norm_eps=rms_norm_eps,
    activation=hidden_act,
    quant_config=quant_config,
    prefix=f"{prefix}.mixer",
    chunk_size=mamba_chunk_size,
)

pre_ff_layernorm instance-attribute

pre_ff_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

__init__

__init__(
    config: BambaConfig,
    layer_idx: int,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/bamba.py
def __init__(self,
             config: BambaConfig,
             layer_idx: int,
             cache_config: Optional[CacheConfig] = None,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = "") -> None:
    super().__init__()
    self.config = config
    self.mamba = MambaMixer2(hidden_size= config.hidden_size,
                            ssm_state_size = config.mamba_d_state,
                            conv_kernel_size = config.mamba_d_conv,
                            intermediate_size = config.mamba_expand *\
                                                config.hidden_size,
                            use_conv_bias = config.mamba_conv_bias,
                            use_bias = config.mamba_proj_bias,
                            n_groups=config.mamba_n_groups,
                            num_heads=config.mamba_n_heads,
                            head_dim=config.mamba_d_head,
                            rms_norm_eps=config.rms_norm_eps,
                            activation=config.hidden_act,
                            quant_config=quant_config,
                            prefix=f"{prefix}.mixer",
                            chunk_size=config.mamba_chunk_size)

    self.feed_forward = BambaMLP(config, quant_config=quant_config)
    self.input_layernorm = RMSNorm(config.hidden_size,
                                   eps=config.rms_norm_eps)
    self.pre_ff_layernorm = RMSNorm(config.hidden_size,
                                    eps=config.rms_norm_eps)

forward

forward(
    hidden_states: Tensor,
    residual: Optional[Tensor],
    mamba_cache_params: MambaCacheParams,
    mamba2_metadata: Mamba2Metadata,
    **kwargs,
)
Source code in vllm/model_executor/models/bamba.py
def forward(
    self,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
    mamba_cache_params: MambaCacheParams,
    mamba2_metadata: Mamba2Metadata,
    **kwargs,
):
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(
            hidden_states, residual)

    hidden_states = self.mamba(hidden_states, mamba_cache_params,
                               mamba2_metadata)
    # Fully Connected
    hidden_states, residual = self.pre_ff_layernorm(
        hidden_states, residual)
    hidden_states = self.feed_forward(hidden_states)
    return hidden_states, residual

BambaModel

Bases: Module

Source code in vllm/model_executor/models/bamba.py
class BambaModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config: BambaConfig = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        lora_vocab = ((lora_config.lora_extra_vocab_size *
                       (lora_config.max_loras or 1)) if lora_config else 0)
        self.vocab_size = config.vocab_size + lora_vocab
        self.org_vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            self.vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
        )

        def get_layer(prefix: str):
            layer_idx = int(prefix.rsplit(".", 1)[1])
            layer_class = ALL_DECODER_LAYER_TYPES[
                config.layers_block_type[layer_idx]]
            return layer_class(
                config,
                layer_idx,
                cache_config,
                quant_config=quant_config,
                prefix=prefix,
            )

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers")
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))

        self.final_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        mamba_cache_params: MambaCacheParams,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:

        attn_metadata = get_forward_context().attn_metadata

        if not envs.VLLM_USE_V1:
            mamba2_metadata = prepare_mamba2_metadata(
                chunk_size=self.config.mamba_chunk_size,
                attn_metadata=attn_metadata,
            )
        else:
            # v1 get mamba2_metadata from forward_context
            mamba2_metadata = None

        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        residual = None
        num_attn = 0
        for i in range(len(self.layers)):
            layer = self.layers[i]
            if isinstance(layer, BambaAttentionDecoderLayer):
                num_attn += 1

            layer_mamba_cache_params = None
            if isinstance(layer,
                          BambaMixerDecoderLayer) and mamba_cache_params:
                layer_mamba_cache_params = mamba_cache_params.at_layer_idx(
                    i - num_attn)

            hidden_states, residual = layer(
                positions=positions,
                hidden_states=hidden_states,
                residual=residual,
                mamba_cache_params=layer_mamba_cache_params,
                mamba2_metadata=mamba2_metadata,
            )

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })
        hidden_states, _ = self.final_layernorm(hidden_states, residual)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue

            if "A_log" in name:
                name = name.replace("A_log", "A")

            if ".self_attn." in name:
                name = name.replace(".self_attn", "")

            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue

                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue

                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size, org_num_embeddings=vocab_size
)

final_layernorm instance-attribute

final_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states", "residual"], hidden_size
    )
)

org_vocab_size instance-attribute

org_vocab_size = vocab_size

vocab_size instance-attribute

vocab_size = vocab_size + lora_vocab

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/bamba.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config: BambaConfig = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config

    self.config = config
    lora_vocab = ((lora_config.lora_extra_vocab_size *
                   (lora_config.max_loras or 1)) if lora_config else 0)
    self.vocab_size = config.vocab_size + lora_vocab
    self.org_vocab_size = config.vocab_size

    self.embed_tokens = VocabParallelEmbedding(
        self.vocab_size,
        config.hidden_size,
        org_num_embeddings=config.vocab_size,
    )

    def get_layer(prefix: str):
        layer_idx = int(prefix.rsplit(".", 1)[1])
        layer_class = ALL_DECODER_LAYER_TYPES[
            config.layers_block_type[layer_idx]]
        return layer_class(
            config,
            layer_idx,
            cache_config,
            quant_config=quant_config,
            prefix=prefix,
        )

    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers")
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], config.hidden_size))

    self.final_layernorm = RMSNorm(config.hidden_size,
                                   eps=config.rms_norm_eps)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    mamba_cache_params: MambaCacheParams,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/bamba.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    mamba_cache_params: MambaCacheParams,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:

    attn_metadata = get_forward_context().attn_metadata

    if not envs.VLLM_USE_V1:
        mamba2_metadata = prepare_mamba2_metadata(
            chunk_size=self.config.mamba_chunk_size,
            attn_metadata=attn_metadata,
        )
    else:
        # v1 get mamba2_metadata from forward_context
        mamba2_metadata = None

    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]

    residual = None
    num_attn = 0
    for i in range(len(self.layers)):
        layer = self.layers[i]
        if isinstance(layer, BambaAttentionDecoderLayer):
            num_attn += 1

        layer_mamba_cache_params = None
        if isinstance(layer,
                      BambaMixerDecoderLayer) and mamba_cache_params:
            layer_mamba_cache_params = mamba_cache_params.at_layer_idx(
                i - num_attn)

        hidden_states, residual = layer(
            positions=positions,
            hidden_states=hidden_states,
            residual=residual,
            mamba_cache_params=layer_mamba_cache_params,
            mamba2_metadata=mamba2_metadata,
        )

    if not get_pp_group().is_last_rank:
        return IntermediateTensors({
            "hidden_states": hidden_states,
            "residual": residual
        })
    hidden_states, _ = self.final_layernorm(hidden_states, residual)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/bamba.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/bamba.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
    ]

    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue

        if "A_log" in name:
            name = name.replace("A_log", "A")

        if ".self_attn." in name:
            name = name.replace(".self_attn", "")

        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue

            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            # Skip layers on other devices.
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            if is_pp_missing_parameter(name, self):
                continue

            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params