vllm.model_executor.models.minicpm3
Inference-only MiniCPM3 model compatible with HuggingFace weights.
MiniCPM3Attention
¶
Bases: Module
Source code in vllm/model_executor/models/minicpm3.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|
attn
instance-attribute
¶
attn = Attention(
num_local_heads,
qk_head_dim,
scaling,
num_kv_heads=num_local_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
kv_a_proj_with_mqa
instance-attribute
¶
kv_a_proj_with_mqa = ReplicatedLinear(
hidden_size,
kv_lora_rank + qk_rope_head_dim,
bias=False,
quant_config=quant_config,
)
kv_b_proj
instance-attribute
¶
kv_b_proj = ColumnParallelLinear(
kv_lora_rank,
num_heads * qk_nope_head_dim + v_head_dim,
bias=False,
quant_config=quant_config,
)
o_proj
instance-attribute
¶
o_proj = RowParallelLinear(
num_heads * v_head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
)
q_a_proj
instance-attribute
¶
q_a_proj = ReplicatedLinear(
hidden_size,
q_lora_rank,
bias=False,
quant_config=quant_config,
)
q_b_proj
instance-attribute
¶
q_b_proj = ColumnParallelLinear(
q_lora_rank,
num_heads * qk_head_dim,
bias=False,
quant_config=quant_config,
)
rotary_emb
instance-attribute
¶
rotary_emb = get_rope(
qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
__init__
¶
__init__(
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: int,
kv_lora_rank: int,
rope_theta: float = 10000,
rope_scaling: Optional[dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/minicpm3.py
forward
¶
Source code in vllm/model_executor/models/minicpm3.py
MiniCPM3DecoderLayer
¶
Bases: MiniCPMDecoderLayer
Source code in vllm/model_executor/models/minicpm3.py
_init_attn_block
¶
Source code in vllm/model_executor/models/minicpm3.py
MiniCPM3ForCausalLM
¶
Bases: MiniCPMForCausalLM
Source code in vllm/model_executor/models/minicpm3.py
packed_modules_mapping
class-attribute
instance-attribute
¶
_init_model
¶
_init_model(*, vllm_config: VllmConfig, prefix: str = '')
MiniCPM3Model
¶
Bases: MiniCPMModel
Source code in vllm/model_executor/models/minicpm3.py
_init_layers
¶
_init_layers(
prefix: str,
config: PretrainedConfig,
cache_config: Optional[CacheConfig],
quant_config: Optional[QuantizationConfig],
)