Skip to content

vllm.model_executor.models.medusa

Medusa

Bases: Module

This class implements the Medusa draft model from the paper: https://arxiv.org/abs/2401.10774 Reference implementation: https://github.com/FasterDecoding/Medusa

Differences from reference implementation: 1. Currently this only supports generating proposals from top-1 tokens. 2. We have an optional token_map which reduces draft vocab to most frequently used tokens to give some additional speed-up by reducing sampling overhead. This is disabled unless the checkpoint file has explicit token_map tensor and config has an optional attribute truncated_vocab_size < vocab_size. To use this technique, one has to find the top-k most frequent tokens in target dataset and add that as a tensor in the draft checkpoint (using key token_map). Also, the draft config needs to have truncated_vocab_size (=k) as an attribute.

Source code in vllm/model_executor/models/medusa.py
class Medusa(nn.Module):
    """This class implements the Medusa draft model from the paper: https://arxiv.org/abs/2401.10774
    Reference implementation: https://github.com/FasterDecoding/Medusa

    Differences from reference implementation:
    1. Currently this only supports generating proposals from top-1 tokens.
    2. We have an optional token_map which reduces draft vocab to most 
       frequently used tokens to give some additional speed-up by reducing 
       sampling overhead. This is disabled unless the checkpoint file has 
       explicit token_map tensor and config has an optional attribute 
       truncated_vocab_size < vocab_size. To use this technique, one has to find
       the top-k most frequent tokens in target dataset and add that as a tensor
       in the draft checkpoint (using key token_map). Also, the draft config
       needs to have truncated_vocab_size (=k) as an attribute."""

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
        config = vllm_config.speculative_config.draft_model_config.hf_config
        super().__init__()
        self.config = config
        self.blocks = nn.ModuleList([
            ResidualBlock(config=config,
                          hidden_size=self.config.hidden_size,
                          num_layers=self.config.num_hidden_layers)
            for _ in range(self.config.num_heads)
        ])
        self.orig_vocab_size = config.vocab_size
        self.truncated_vocab_size = config.truncated_vocab_size
        self.unpadded_vocab_size = self.truncated_vocab_size

        if getattr(config, "original_lm_head", False):
            self.lm_head = ParallelLMHead(
                self.unpadded_vocab_size,
                config.hidden_size,
                org_num_embeddings=self.truncated_vocab_size,
                padding_size=DEFAULT_VOCAB_PADDING_SIZE,
            )
            self.lm_heads = [
                self.lm_head for _ in range(self.config.num_heads)
            ]
        else:
            self.lm_heads = nn.ModuleList([
                ParallelLMHead(
                    self.unpadded_vocab_size,
                    config.hidden_size,
                    org_num_embeddings=self.truncated_vocab_size,
                    padding_size=DEFAULT_VOCAB_PADDING_SIZE,
                ) for _ in range(self.config.num_heads)
            ])

        logit_scale = getattr(config, "logit_scale", 1.0)
        self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                                self.truncated_vocab_size,
                                                logit_scale)

        # Token map is a idx to token mapping to reduce the vocab size for
        # the draft model. Using smaller vocab size for draft, containing
        # only most frequent tokens reduces the speculation overhead. This
        # doesn't affect the acceptance rate much and thus gives more speed
        # -up. By default, this is disabled and is only used if the EAGLE
        # checkpoint file has token_map tensor.
        self.token_map = None

    def forward(self, hidden_states: torch.Tensor) -> list[torch.Tensor]:
        return [block(hidden_states) for block in self.blocks]

    def compute_logits(
            self, hidden_states: list[torch.Tensor],
            sampling_metadata: SamplingMetadata) -> list[torch.Tensor]:
        logits_lst: list[torch.Tensor] = []

        for hs, lm_head in zip(hidden_states, self.lm_heads):
            _logits = self.logits_processor(lm_head, hs, sampling_metadata)

            if _logits is None:
                # _logits should only be None on rank > 0, in which case
                # it should remain true for every lm_head
                assert len(logits_lst) == 0
                continue

            if self.token_map is None:
                logits_lst.append(_logits)
            else:
                logits_lst.append(-torch.inf * torch.ones(
                    size=(*_logits.shape[:-1], self.orig_vocab_size),
                    device=_logits.device,
                    dtype=_logits.dtype))

                logits_lst[-1][..., self.token_map] = _logits

        return logits_lst

    def sample(
        self,
        logits: list[torch.Tensor],
        sampling_metadata: SamplingMetadata,
    ) -> list[SamplerOutput]:
        logits = torch.stack(logits, dim=0).float()
        logprobs = torch.log_softmax(logits, dim=-1)
        token_ids = logits.argmax(-1)  # support only top-1 for now
        probs = torch.softmax(logits, dim=-1)

        token_id_list = []
        token_prob_list = []
        token_logprob_list = []

        for idx, seq_group in enumerate(sampling_metadata.seq_groups):
            token_id_list.append(token_ids[:, seq_group.sample_indices])
            token_prob_list.append(probs[:, seq_group.sample_indices])
            token_logprob_list.append(logprobs[:, seq_group.sample_indices])

        outputs: list[Optional[SamplerOutput]] = []
        for idx in range(len(sampling_metadata.seq_groups)):
            outputs.append(
                SamplerOutput(
                    outputs=None,
                    sampled_token_probs=token_prob_list[idx].squeeze(1),
                    logprobs=token_logprob_list[idx].squeeze(1),
                    sampled_token_ids=token_id_list[idx].squeeze(1),
                ))

        return outputs

    def generate_proposals(
        self,
        previous_hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[list[SamplerOutput]]:
        # During preemption, we may receive an empty tensor (batch_size=0)
        if previous_hidden_states.size(0) == 0:
            # Return None to signal the Top1Proposer that no proposals
            # were generated for this batch, allowing it to handle this
            # special case appropriately
            return None

        return self.sample(
            logits=self.compute_logits(
                hidden_states=self.forward(previous_hidden_states),
                sampling_metadata=sampling_metadata,
            ),
            sampling_metadata=sampling_metadata,
        )

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()

        weights_map = {}

        for name, loaded_weight in weights:
            name = name.replace("medusa_heads.", "")

            if name == "token_map":
                if self.truncated_vocab_size < self.orig_vocab_size:
                    self.token_map = nn.Parameter(loaded_weight,
                                                  requires_grad=False)
            elif name in params_dict:
                weights_map[name] = loaded_weight
            elif (getattr(self.config, "original_lm_head", False)
                  and name == "lm_heads.0.weight"):
                weights_map["lm_head.weight"] = loaded_weight

        for name, loaded_weight in weights_map.items():
            if "lm_head" in name and self.token_map is not None and\
                loaded_weight.shape[0] > self.token_map.shape[0]:

                loaded_weight = loaded_weight[self.token_map]

            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
            loaded_params.add(name)

        if self.token_map is not None:
            self.token_map.to(device=self.lm_heads[0].weight.device)

        assert (self.truncated_vocab_size
                == self.orig_vocab_size) or (self.token_map is not None)

        return loaded_params

blocks instance-attribute

blocks = ModuleList(
    [
        ResidualBlock(
            config=config,
            hidden_size=hidden_size,
            num_layers=num_hidden_layers,
        )
        for _ in range(num_heads)
    ]
)

config instance-attribute

config = config

lm_head instance-attribute

lm_head = ParallelLMHead(
    unpadded_vocab_size,
    hidden_size,
    org_num_embeddings=truncated_vocab_size,
    padding_size=DEFAULT_VOCAB_PADDING_SIZE,
)

lm_heads instance-attribute

lm_heads = [lm_head for _ in range(num_heads)]

logits_processor instance-attribute

logits_processor = LogitsProcessor(
    unpadded_vocab_size, truncated_vocab_size, logit_scale
)

orig_vocab_size instance-attribute

orig_vocab_size = vocab_size

token_map instance-attribute

token_map = None

truncated_vocab_size instance-attribute

truncated_vocab_size = truncated_vocab_size

unpadded_vocab_size instance-attribute

unpadded_vocab_size = truncated_vocab_size

__init__

__init__(
    *, vllm_config: VllmConfig, prefix: str = ""
) -> None
Source code in vllm/model_executor/models/medusa.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
    config = vllm_config.speculative_config.draft_model_config.hf_config
    super().__init__()
    self.config = config
    self.blocks = nn.ModuleList([
        ResidualBlock(config=config,
                      hidden_size=self.config.hidden_size,
                      num_layers=self.config.num_hidden_layers)
        for _ in range(self.config.num_heads)
    ])
    self.orig_vocab_size = config.vocab_size
    self.truncated_vocab_size = config.truncated_vocab_size
    self.unpadded_vocab_size = self.truncated_vocab_size

    if getattr(config, "original_lm_head", False):
        self.lm_head = ParallelLMHead(
            self.unpadded_vocab_size,
            config.hidden_size,
            org_num_embeddings=self.truncated_vocab_size,
            padding_size=DEFAULT_VOCAB_PADDING_SIZE,
        )
        self.lm_heads = [
            self.lm_head for _ in range(self.config.num_heads)
        ]
    else:
        self.lm_heads = nn.ModuleList([
            ParallelLMHead(
                self.unpadded_vocab_size,
                config.hidden_size,
                org_num_embeddings=self.truncated_vocab_size,
                padding_size=DEFAULT_VOCAB_PADDING_SIZE,
            ) for _ in range(self.config.num_heads)
        ])

    logit_scale = getattr(config, "logit_scale", 1.0)
    self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                            self.truncated_vocab_size,
                                            logit_scale)

    # Token map is a idx to token mapping to reduce the vocab size for
    # the draft model. Using smaller vocab size for draft, containing
    # only most frequent tokens reduces the speculation overhead. This
    # doesn't affect the acceptance rate much and thus gives more speed
    # -up. By default, this is disabled and is only used if the EAGLE
    # checkpoint file has token_map tensor.
    self.token_map = None

compute_logits

compute_logits(
    hidden_states: list[Tensor],
    sampling_metadata: SamplingMetadata,
) -> list[Tensor]
Source code in vllm/model_executor/models/medusa.py
def compute_logits(
        self, hidden_states: list[torch.Tensor],
        sampling_metadata: SamplingMetadata) -> list[torch.Tensor]:
    logits_lst: list[torch.Tensor] = []

    for hs, lm_head in zip(hidden_states, self.lm_heads):
        _logits = self.logits_processor(lm_head, hs, sampling_metadata)

        if _logits is None:
            # _logits should only be None on rank > 0, in which case
            # it should remain true for every lm_head
            assert len(logits_lst) == 0
            continue

        if self.token_map is None:
            logits_lst.append(_logits)
        else:
            logits_lst.append(-torch.inf * torch.ones(
                size=(*_logits.shape[:-1], self.orig_vocab_size),
                device=_logits.device,
                dtype=_logits.dtype))

            logits_lst[-1][..., self.token_map] = _logits

    return logits_lst

forward

forward(hidden_states: Tensor) -> list[Tensor]
Source code in vllm/model_executor/models/medusa.py
def forward(self, hidden_states: torch.Tensor) -> list[torch.Tensor]:
    return [block(hidden_states) for block in self.blocks]

generate_proposals

generate_proposals(
    previous_hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[list[SamplerOutput]]
Source code in vllm/model_executor/models/medusa.py
def generate_proposals(
    self,
    previous_hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[list[SamplerOutput]]:
    # During preemption, we may receive an empty tensor (batch_size=0)
    if previous_hidden_states.size(0) == 0:
        # Return None to signal the Top1Proposer that no proposals
        # were generated for this batch, allowing it to handle this
        # special case appropriately
        return None

    return self.sample(
        logits=self.compute_logits(
            hidden_states=self.forward(previous_hidden_states),
            sampling_metadata=sampling_metadata,
        ),
        sampling_metadata=sampling_metadata,
    )

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/medusa.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()

    weights_map = {}

    for name, loaded_weight in weights:
        name = name.replace("medusa_heads.", "")

        if name == "token_map":
            if self.truncated_vocab_size < self.orig_vocab_size:
                self.token_map = nn.Parameter(loaded_weight,
                                              requires_grad=False)
        elif name in params_dict:
            weights_map[name] = loaded_weight
        elif (getattr(self.config, "original_lm_head", False)
              and name == "lm_heads.0.weight"):
            weights_map["lm_head.weight"] = loaded_weight

    for name, loaded_weight in weights_map.items():
        if "lm_head" in name and self.token_map is not None and\
            loaded_weight.shape[0] > self.token_map.shape[0]:

            loaded_weight = loaded_weight[self.token_map]

        param = params_dict[name]
        weight_loader = getattr(param, "weight_loader",
                                default_weight_loader)
        weight_loader(param, loaded_weight)
        loaded_params.add(name)

    if self.token_map is not None:
        self.token_map.to(device=self.lm_heads[0].weight.device)

    assert (self.truncated_vocab_size
            == self.orig_vocab_size) or (self.token_map is not None)

    return loaded_params

sample

sample(
    logits: list[Tensor],
    sampling_metadata: SamplingMetadata,
) -> list[SamplerOutput]
Source code in vllm/model_executor/models/medusa.py
def sample(
    self,
    logits: list[torch.Tensor],
    sampling_metadata: SamplingMetadata,
) -> list[SamplerOutput]:
    logits = torch.stack(logits, dim=0).float()
    logprobs = torch.log_softmax(logits, dim=-1)
    token_ids = logits.argmax(-1)  # support only top-1 for now
    probs = torch.softmax(logits, dim=-1)

    token_id_list = []
    token_prob_list = []
    token_logprob_list = []

    for idx, seq_group in enumerate(sampling_metadata.seq_groups):
        token_id_list.append(token_ids[:, seq_group.sample_indices])
        token_prob_list.append(probs[:, seq_group.sample_indices])
        token_logprob_list.append(logprobs[:, seq_group.sample_indices])

    outputs: list[Optional[SamplerOutput]] = []
    for idx in range(len(sampling_metadata.seq_groups)):
        outputs.append(
            SamplerOutput(
                outputs=None,
                sampled_token_probs=token_prob_list[idx].squeeze(1),
                logprobs=token_logprob_list[idx].squeeze(1),
                sampled_token_ids=token_id_list[idx].squeeze(1),
            ))

    return outputs

ResidualBlock

Bases: Module

Source code in vllm/model_executor/models/medusa.py
class ResidualBlock(nn.Module):

    def __init__(self, config: VllmConfig, hidden_size: int,
                 num_layers: int) -> None:
        super().__init__()

        self.layers = nn.ModuleList([
            nn.Linear(hidden_size,
                      hidden_size,
                      bias=getattr(config, "medusa_fc_bias", False))
            for _ in range(num_layers)
        ])
        self.act = nn.SiLU()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for layer in self.layers:
            x = x + self.act(layer(x))
        return x

act instance-attribute

act = SiLU()

layers instance-attribute

layers = ModuleList(
    [
        Linear(
            hidden_size,
            hidden_size,
            bias=getattr(config, "medusa_fc_bias", False),
        )
        for _ in range(num_layers)
    ]
)

__init__

__init__(
    config: VllmConfig, hidden_size: int, num_layers: int
) -> None
Source code in vllm/model_executor/models/medusa.py
def __init__(self, config: VllmConfig, hidden_size: int,
             num_layers: int) -> None:
    super().__init__()

    self.layers = nn.ModuleList([
        nn.Linear(hidden_size,
                  hidden_size,
                  bias=getattr(config, "medusa_fc_bias", False))
        for _ in range(num_layers)
    ])
    self.act = nn.SiLU()

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/medusa.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    for layer in self.layers:
        x = x + self.act(layer(x))
    return x