vllm.model_executor.models.medusa
Medusa
¶
Bases: Module
This class implements the Medusa draft model from the paper: https://arxiv.org/abs/2401.10774 Reference implementation: https://github.com/FasterDecoding/Medusa
Differences from reference implementation: 1. Currently this only supports generating proposals from top-1 tokens. 2. We have an optional token_map which reduces draft vocab to most frequently used tokens to give some additional speed-up by reducing sampling overhead. This is disabled unless the checkpoint file has explicit token_map tensor and config has an optional attribute truncated_vocab_size < vocab_size. To use this technique, one has to find the top-k most frequent tokens in target dataset and add that as a tensor in the draft checkpoint (using key token_map). Also, the draft config needs to have truncated_vocab_size (=k) as an attribute.
Source code in vllm/model_executor/models/medusa.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
blocks
instance-attribute
¶
blocks = ModuleList(
[
ResidualBlock(
config=config,
hidden_size=hidden_size,
num_layers=num_hidden_layers,
)
for _ in range(num_heads)
]
)
lm_head
instance-attribute
¶
lm_head = ParallelLMHead(
unpadded_vocab_size,
hidden_size,
org_num_embeddings=truncated_vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
)
logits_processor
instance-attribute
¶
logits_processor = LogitsProcessor(
unpadded_vocab_size, truncated_vocab_size, logit_scale
)
__init__
¶
__init__(
*, vllm_config: VllmConfig, prefix: str = ""
) -> None
Source code in vllm/model_executor/models/medusa.py
compute_logits
¶
compute_logits(
hidden_states: list[Tensor],
sampling_metadata: SamplingMetadata,
) -> list[Tensor]
Source code in vllm/model_executor/models/medusa.py
forward
¶
generate_proposals
¶
generate_proposals(
previous_hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[list[SamplerOutput]]
Source code in vllm/model_executor/models/medusa.py
load_weights
¶
Source code in vllm/model_executor/models/medusa.py
sample
¶
sample(
logits: list[Tensor],
sampling_metadata: SamplingMetadata,
) -> list[SamplerOutput]
Source code in vllm/model_executor/models/medusa.py
ResidualBlock
¶
Bases: Module
Source code in vllm/model_executor/models/medusa.py
layers
instance-attribute
¶
layers = ModuleList(
[
Linear(
hidden_size,
hidden_size,
bias=getattr(config, "medusa_fc_bias", False),
)
for _ in range(num_layers)
]
)
__init__
¶
__init__(
config: VllmConfig, hidden_size: int, num_layers: int
) -> None