vllm.model_executor.models.bloom
Inference-only BLOOM model compatible with HuggingFace weights.
BloomAttention
¶
Bases: Module
Source code in vllm/model_executor/models/bloom.py
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
alibi_slopes=alibi_slopes,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
dense
instance-attribute
¶
dense = RowParallelLinear(
hidden_size,
hidden_size,
bias=True,
quant_config=quant_config,
)
query_key_value
instance-attribute
¶
query_key_value = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
bias=True,
quant_config=quant_config,
)
__init__
¶
__init__(
config: BloomConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/bloom.py
forward
¶
Source code in vllm/model_executor/models/bloom.py
BloomBlock
¶
Bases: Module
Source code in vllm/model_executor/models/bloom.py
apply_residual_connection_post_layernorm
instance-attribute
¶
input_layernorm
instance-attribute
¶
input_layernorm = LayerNorm(
hidden_size, eps=layer_norm_epsilon
)
post_attention_layernorm
instance-attribute
¶
post_attention_layernorm = LayerNorm(
hidden_size, eps=layer_norm_epsilon
)
self_attention
instance-attribute
¶
self_attention = BloomAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.self_attention",
)
__init__
¶
__init__(
config: BloomConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/bloom.py
forward
¶
Source code in vllm/model_executor/models/bloom.py
BloomForCausalLM
¶
Bases: Module
, SupportsPP
, SupportsV0Only
, SupportsQuant
Source code in vllm/model_executor/models/bloom.py
make_empty_intermediate_tensors
instance-attribute
¶
transformer
instance-attribute
¶
transformer = BloomModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/bloom.py
compute_logits
¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward
¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/bloom.py
get_input_embeddings
¶
load_weights
¶
BloomMLP
¶
Bases: Module
Source code in vllm/model_executor/models/bloom.py
dense_4h_to_h
instance-attribute
¶
dense_4h_to_h = RowParallelLinear(
4 * hidden_size, hidden_size, quant_config=quant_config
)
dense_h_to_4h
instance-attribute
¶
dense_h_to_4h = ColumnParallelLinear(
hidden_size, 4 * hidden_size, quant_config=quant_config
)
__init__
¶
__init__(
config: BloomConfig,
quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/bloom.py
BloomModel
¶
Bases: Module
Source code in vllm/model_executor/models/bloom.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
|
make_empty_intermediate_tensors
instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], hidden_size
)
)
word_embeddings
instance-attribute
¶
word_embeddings = VocabParallelEmbedding(
vocab_size, embed_dim
)
word_embeddings_layernorm
instance-attribute
¶
word_embeddings_layernorm = LayerNorm(
embed_dim, eps=layer_norm_epsilon
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/bloom.py
forward
¶
forward(
input_ids: Tensor,
position_ids: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]