Skip to content

vllm.model_executor.layers.layernorm

Custom normalization layers.

GemmaRMSNorm

Bases: CustomOp

RMS normalization for Gemma.

Two differences from the above RMSNorm
  1. x * (1 + w) instead of x * w.
  2. (x * w).to(orig_dtype) instead of x.to(orig_dtype) * w.
Source code in vllm/model_executor/layers/layernorm.py
@CustomOp.register("gemma_rms_norm")
class GemmaRMSNorm(CustomOp):
    """RMS normalization for Gemma.

    Two differences from the above RMSNorm:
        1. x * (1 + w) instead of x * w.
        2. (x * w).to(orig_dtype) instead of x.to(orig_dtype) * w.
    """

    def __init__(
        self,
        hidden_size: int,
        eps: float = 1e-6,
    ) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    @staticmethod
    def forward_static(
        weight: torch.Tensor,
        variance_epsilon: float,
        x: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        """PyTorch-native implementation equivalent to forward()."""
        orig_dtype = x.dtype
        if residual is not None:
            if orig_dtype == torch.float16:
                x = x + residual.float()
            else:
                x = x + residual
            residual = x

        x = x.float()
        variance = x.pow(2).mean(dim=-1, keepdim=True)
        x = x * torch.rsqrt(variance + variance_epsilon)
        # Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
        # See https://github.com/huggingface/transformers/pull/29402
        x = x * (1.0 + weight.float())
        x = x.to(orig_dtype)
        return x if residual is None else (x, residual)

    def forward_native(
        self,
        x: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        """PyTorch-native implementation equivalent to forward()."""
        return self.forward_static(self.weight.data, self.variance_epsilon, x,
                                   residual)

    def forward_cuda(
        self,
        x: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        if torch.compiler.is_compiling():
            return self.forward_native(x, residual)

        if not getattr(self, "_is_compiled", False):
            self.forward_static = torch.compile(  # type: ignore
                self.forward_static)
            self._is_compiled = True
        return self.forward_native(x, residual)

variance_epsilon instance-attribute

variance_epsilon = eps

weight instance-attribute

weight = Parameter(zeros(hidden_size))

__init__

__init__(hidden_size: int, eps: float = 1e-06) -> None
Source code in vllm/model_executor/layers/layernorm.py
def __init__(
    self,
    hidden_size: int,
    eps: float = 1e-6,
) -> None:
    super().__init__()
    self.weight = nn.Parameter(torch.zeros(hidden_size))
    self.variance_epsilon = eps

forward_cuda

forward_cuda(
    x: Tensor, residual: Optional[Tensor] = None
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/layernorm.py
def forward_cuda(
    self,
    x: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    if torch.compiler.is_compiling():
        return self.forward_native(x, residual)

    if not getattr(self, "_is_compiled", False):
        self.forward_static = torch.compile(  # type: ignore
            self.forward_static)
        self._is_compiled = True
    return self.forward_native(x, residual)

forward_native

forward_native(
    x: Tensor, residual: Optional[Tensor] = None
) -> Union[Tensor, tuple[Tensor, Tensor]]

PyTorch-native implementation equivalent to forward().

Source code in vllm/model_executor/layers/layernorm.py
def forward_native(
    self,
    x: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    """PyTorch-native implementation equivalent to forward()."""
    return self.forward_static(self.weight.data, self.variance_epsilon, x,
                               residual)

forward_static staticmethod

forward_static(
    weight: Tensor,
    variance_epsilon: float,
    x: Tensor,
    residual: Optional[Tensor],
) -> Union[Tensor, tuple[Tensor, Tensor]]

PyTorch-native implementation equivalent to forward().

Source code in vllm/model_executor/layers/layernorm.py
@staticmethod
def forward_static(
    weight: torch.Tensor,
    variance_epsilon: float,
    x: torch.Tensor,
    residual: Optional[torch.Tensor],
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    """PyTorch-native implementation equivalent to forward()."""
    orig_dtype = x.dtype
    if residual is not None:
        if orig_dtype == torch.float16:
            x = x + residual.float()
        else:
            x = x + residual
        residual = x

    x = x.float()
    variance = x.pow(2).mean(dim=-1, keepdim=True)
    x = x * torch.rsqrt(variance + variance_epsilon)
    # Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
    # See https://github.com/huggingface/transformers/pull/29402
    x = x * (1.0 + weight.float())
    x = x.to(orig_dtype)
    return x if residual is None else (x, residual)

RMSNorm

Bases: CustomOp

Root mean square normalization.

Computes x -> w * x / sqrt(E[x^2] + eps) where w is the learned weight. Refer to https://arxiv.org/abs/1910.07467

Source code in vllm/model_executor/layers/layernorm.py
@CustomOp.register("rms_norm")
class RMSNorm(CustomOp):
    """Root mean square normalization.

    Computes x -> w * x / sqrt(E[x^2] + eps) where w is the learned weight.
    Refer to https://arxiv.org/abs/1910.07467
    """

    def __init__(
        self,
        hidden_size: int,
        eps: float = 1e-6,
        var_hidden_size: Optional[int] = None,
        has_weight: bool = True,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        super().__init__()

        self.hidden_size = hidden_size
        self.variance_epsilon = eps
        self.variance_size_override = (None if var_hidden_size == hidden_size
                                       else var_hidden_size)
        self.has_weight = has_weight
        if dtype is not None:
            self.weight = torch.ones(hidden_size, dtype=dtype)
        else:
            self.weight = torch.ones(hidden_size)
        if self.has_weight:
            self.weight = nn.Parameter(self.weight)

    def forward_native(
        self,
        x: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        """PyTorch-native implementation equivalent to forward()."""
        orig_dtype = x.dtype
        x = x.to(torch.float32)
        if residual is not None:
            x = x + residual.to(torch.float32)
            residual = x.to(orig_dtype)

        hidden_size = x.shape[-1]
        if hidden_size != self.hidden_size:
            raise ValueError("Expected hidden_size to be "
                             f"{self.hidden_size}, but found: {hidden_size}")

        if self.variance_size_override is None:
            x_var = x
        else:
            if hidden_size < self.variance_size_override:
                raise ValueError(
                    "Expected hidden_size to be at least "
                    f"{self.variance_size_override}, but found: {hidden_size}")

            x_var = x[:, :, :self.variance_size_override]

        variance = x_var.pow(2).mean(dim=-1, keepdim=True)

        x = x * torch.rsqrt(variance + self.variance_epsilon)
        x = x.to(orig_dtype)
        if self.has_weight:
            x = x * self.weight
        if residual is None:
            return x
        else:
            return x, residual

    def forward_cuda(
        self,
        x: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        if self.variance_size_override is not None:
            return self.forward_native(x, residual)

        add_residual = residual is not None
        norm_func = dispatch_cuda_rmsnorm_func(add_residual)

        if add_residual:
            return norm_func(x, residual, self.weight.data,
                             self.variance_epsilon)
        else:
            return norm_func(x, self.weight.data, self.variance_epsilon)

    def forward_hpu(
        self,
        x: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        from vllm_hpu_extension.kernels import rms_norm
        HPUFusedRMSNorm = rms_norm()
        if HPUFusedRMSNorm is None:
            return self.forward_native(x, residual)
        if residual is not None:
            orig_shape = x.shape
            residual += x.view(residual.shape)
            # Note: HPUFusedRMSNorm requires 3D tensors as inputs
            x = HPUFusedRMSNorm.apply(residual, self.weight,
                                      self.variance_epsilon)
            return x.view(orig_shape), residual

        x = HPUFusedRMSNorm.apply(x, self.weight, self.variance_epsilon)
        return x

    def forward_xpu(
        self,
        x: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        if self.variance_size_override is not None:
            return self.forward_native(x, residual)

        from vllm._ipex_ops import ipex_ops as ops

        if residual is not None:
            ops.fused_add_rms_norm(
                x,
                residual,
                self.weight.data,
                self.variance_epsilon,
            )
            return x, residual
        return ops.rms_norm(
            x,
            self.weight.data,
            self.variance_epsilon,
        )

    def extra_repr(self) -> str:
        s = f"hidden_size={self.weight.data.size(0)}"
        s += f", eps={self.variance_epsilon}"
        return s

has_weight instance-attribute

has_weight = has_weight

hidden_size instance-attribute

hidden_size = hidden_size

variance_epsilon instance-attribute

variance_epsilon = eps

variance_size_override instance-attribute

variance_size_override = (
    None
    if var_hidden_size == hidden_size
    else var_hidden_size
)

weight instance-attribute

weight = ones(hidden_size, dtype=dtype)

__init__

__init__(
    hidden_size: int,
    eps: float = 1e-06,
    var_hidden_size: Optional[int] = None,
    has_weight: bool = True,
    dtype: Optional[dtype] = None,
) -> None
Source code in vllm/model_executor/layers/layernorm.py
def __init__(
    self,
    hidden_size: int,
    eps: float = 1e-6,
    var_hidden_size: Optional[int] = None,
    has_weight: bool = True,
    dtype: Optional[torch.dtype] = None,
) -> None:
    super().__init__()

    self.hidden_size = hidden_size
    self.variance_epsilon = eps
    self.variance_size_override = (None if var_hidden_size == hidden_size
                                   else var_hidden_size)
    self.has_weight = has_weight
    if dtype is not None:
        self.weight = torch.ones(hidden_size, dtype=dtype)
    else:
        self.weight = torch.ones(hidden_size)
    if self.has_weight:
        self.weight = nn.Parameter(self.weight)

extra_repr

extra_repr() -> str
Source code in vllm/model_executor/layers/layernorm.py
def extra_repr(self) -> str:
    s = f"hidden_size={self.weight.data.size(0)}"
    s += f", eps={self.variance_epsilon}"
    return s

forward_cuda

forward_cuda(
    x: Tensor, residual: Optional[Tensor] = None
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/layernorm.py
def forward_cuda(
    self,
    x: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    if self.variance_size_override is not None:
        return self.forward_native(x, residual)

    add_residual = residual is not None
    norm_func = dispatch_cuda_rmsnorm_func(add_residual)

    if add_residual:
        return norm_func(x, residual, self.weight.data,
                         self.variance_epsilon)
    else:
        return norm_func(x, self.weight.data, self.variance_epsilon)

forward_hpu

forward_hpu(
    x: Tensor, residual: Optional[Tensor] = None
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/layernorm.py
def forward_hpu(
    self,
    x: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    from vllm_hpu_extension.kernels import rms_norm
    HPUFusedRMSNorm = rms_norm()
    if HPUFusedRMSNorm is None:
        return self.forward_native(x, residual)
    if residual is not None:
        orig_shape = x.shape
        residual += x.view(residual.shape)
        # Note: HPUFusedRMSNorm requires 3D tensors as inputs
        x = HPUFusedRMSNorm.apply(residual, self.weight,
                                  self.variance_epsilon)
        return x.view(orig_shape), residual

    x = HPUFusedRMSNorm.apply(x, self.weight, self.variance_epsilon)
    return x

forward_native

forward_native(
    x: Tensor, residual: Optional[Tensor] = None
) -> Union[Tensor, tuple[Tensor, Tensor]]

PyTorch-native implementation equivalent to forward().

Source code in vllm/model_executor/layers/layernorm.py
def forward_native(
    self,
    x: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    """PyTorch-native implementation equivalent to forward()."""
    orig_dtype = x.dtype
    x = x.to(torch.float32)
    if residual is not None:
        x = x + residual.to(torch.float32)
        residual = x.to(orig_dtype)

    hidden_size = x.shape[-1]
    if hidden_size != self.hidden_size:
        raise ValueError("Expected hidden_size to be "
                         f"{self.hidden_size}, but found: {hidden_size}")

    if self.variance_size_override is None:
        x_var = x
    else:
        if hidden_size < self.variance_size_override:
            raise ValueError(
                "Expected hidden_size to be at least "
                f"{self.variance_size_override}, but found: {hidden_size}")

        x_var = x[:, :, :self.variance_size_override]

    variance = x_var.pow(2).mean(dim=-1, keepdim=True)

    x = x * torch.rsqrt(variance + self.variance_epsilon)
    x = x.to(orig_dtype)
    if self.has_weight:
        x = x * self.weight
    if residual is None:
        return x
    else:
        return x, residual

forward_xpu

forward_xpu(
    x: Tensor, residual: Optional[Tensor] = None
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/layernorm.py
def forward_xpu(
    self,
    x: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    if self.variance_size_override is not None:
        return self.forward_native(x, residual)

    from vllm._ipex_ops import ipex_ops as ops

    if residual is not None:
        ops.fused_add_rms_norm(
            x,
            residual,
            self.weight.data,
            self.variance_epsilon,
        )
        return x, residual
    return ops.rms_norm(
        x,
        self.weight.data,
        self.variance_epsilon,
    )

dispatch_cuda_rmsnorm_func

dispatch_cuda_rmsnorm_func(add_residual: bool)
Source code in vllm/model_executor/layers/layernorm.py
def dispatch_cuda_rmsnorm_func(add_residual: bool):
    if add_residual:
        if is_rocm_aiter_rmsnorm_enabled():
            return rocm_aiter_fused_add_rms_norm
        return fused_add_rms_norm

    if is_rocm_aiter_rmsnorm_enabled():
        return rocm_aiter_rms_norm
    return rms_norm

fused_add_rms_norm

fused_add_rms_norm(
    x: Tensor,
    residual: Tensor,
    weight: Tensor,
    variance_epsilon: float,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/layernorm.py
def fused_add_rms_norm(
        x: torch.Tensor, residual: torch.Tensor, weight: torch.Tensor,
        variance_epsilon: float) -> tuple[torch.Tensor, torch.Tensor]:
    from vllm import _custom_ops as ops
    ops.fused_add_rms_norm(
        x,
        residual,
        weight,
        variance_epsilon,
    )
    return x, residual

is_rocm_aiter_rmsnorm_enabled

is_rocm_aiter_rmsnorm_enabled() -> bool
Source code in vllm/model_executor/layers/layernorm.py
def is_rocm_aiter_rmsnorm_enabled() -> bool:
    return current_platform.is_rocm() \
        and envs.VLLM_ROCM_USE_AITER_RMSNORM \
        and envs.VLLM_ROCM_USE_AITER

rms_norm

rms_norm(
    x: Tensor, weight: Tensor, variance_epsilon: float
) -> Tensor
Source code in vllm/model_executor/layers/layernorm.py
def rms_norm(x: torch.Tensor, weight: torch.Tensor,
             variance_epsilon: float) -> torch.Tensor:
    from vllm import _custom_ops as ops
    out = torch.empty_like(x)
    ops.rms_norm(
        out,
        x,
        weight,
        variance_epsilon,
    )
    return out

rocm_aiter_fused_add_rms_norm

rocm_aiter_fused_add_rms_norm(
    x: Tensor,
    residual: Tensor,
    weight: Tensor,
    variance_epsilon: float,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/layernorm.py
def rocm_aiter_fused_add_rms_norm(
        x: torch.Tensor, residual: torch.Tensor, weight: torch.Tensor,
        variance_epsilon: float) -> tuple[torch.Tensor, torch.Tensor]:

    import aiter as rocm_aiter

    residual_out = torch.empty_like(residual)
    output = torch.empty_like(x)
    rocm_aiter.rmsnorm2d_fwd_with_add(
        output,  # output
        x,  # input
        residual,  # residual input
        residual_out,  # residual output
        weight,
        variance_epsilon,
    )
    return output, residual_out

rocm_aiter_rms_norm

rocm_aiter_rms_norm(
    x: Tensor, weight: Tensor, variance_epsilon: float
) -> Tensor
Source code in vllm/model_executor/layers/layernorm.py
def rocm_aiter_rms_norm(x: torch.Tensor, weight: torch.Tensor,
                        variance_epsilon: float) -> torch.Tensor:
    import aiter as rocm_aiter
    if x.dim() > 2:
        x_original_shape = x.shape
        x = x.reshape(-1, x_original_shape[-1])
        x = rocm_aiter.rms_norm(x, weight, variance_epsilon)
        return x.reshape(x_original_shape)

    return rocm_aiter.rms_norm(x, weight, variance_epsilon)