vllm.transformers_utils.configs.solar
Solar model configuration
SolarConfig
¶
Bases: PretrainedConfig
This is the configuration class to store
the configuration of a [SolarModel
].
It is used to instantiate an LLaMA model
according to the specified arguments,
defining the model architecture.
Instantiating a configuration with the
defaults will yield a similar
configuration to that of the LLaMA-7B.
Configuration objects inherit from [PretrainedConfig
]
and can be used to control the model outputs.
Read the documentation from [PretrainedConfig
] for more information.
Args:
vocab_size (int
, optional, defaults to 32000):
Vocabulary size of the LLaMA model.
Defines the number of different tokens
that can be represented by the inputs_ids
passed when calling [SolarModel
]
hidden_size (int
, optional, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (int
, optional, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (int
, optional, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (int
, optional, defaults to 32):
Number of attention heads for each attention layer
in the Transformer decoder.
num_key_value_heads (int
, optional):
This is the number of key_value heads that
should be used to implement Grouped Query Attention. If
num_key_value_heads=num_attention_heads
,
the model will use Multi Head Attention (MHA), if
num_key_value_heads=1
the model
will use Multi Query Attention (MQA)
otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint,
each group key and value head should be constructed
by meanpooling all the original heads within that group.
For more details checkout [this paper]
(https://arxiv.org/pdf/2305.13245.pdf).
If it is not specified, will default to
num_attention_heads
.
hidden_act (str
or function
, optional, defaults to "silu"
):
The non-linear activation function (function or string)
in the decoder.
max_position_embeddings (int
, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with.
Solar 1 supports up to 2048 tokens,
Solar 2 up to 4096, CodeSolar up to 16384.
initializer_range (float
, optional, defaults to 0.02):
The standard deviation of
the truncated_normal_initializer for initializing
all weight matrices.
rms_norm_eps (float
, optional, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (bool
, optional, defaults to True
):
Whether or not the model should return
the last key/values attentions (not used by all models). Only
relevant if config.is_decoder=True
.
pad_token_id (int
, optional):
Padding token id.
bos_token_id (int
, optional, defaults to 1):
Beginning of stream token id.
eos_token_id (int
, optional, defaults to 2):
End of stream token id.
pretraining_tp (int
, optional, defaults to 1):
Experimental feature. Tensor parallelism rank
used during pretraining.
Please refer to this
document
to understand more about it. This value is
necessary to ensure exact reproducibility
of the pretraining results.
Please refer to this
issue.
tie_word_embeddings (bool
, optional, defaults to False
):
Whether to tie weight embeddings
rope_theta (float
, optional, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (dict
, optional):
Dictionary containing the scaling configuration for
the RoPE embeddings.
Currently supports two scaling
strategies: linear and dynamic.
Their scaling factor must be a float greater than 1.
The expected format is
{"type": strategy name, "factor": scaling factor}
.
When using this flag, don't update
max_position_embeddings
to the expected new maximum.
See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/
dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking
API changes in future versions.
attention_bias (bool
, optional, defaults to False
):
Whether to use a bias in the query, key, value
and output projection layers during self-attention.
attention_dropout (float
, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (bool
, optional, defaults to False
):
Whether to use a bias in up_proj, down_proj and gate_proj
layers in the MLP layers.
sliding_window (int
, optional, defaults to 2047):
Sliding window attention window size. If not specified,
will default to 2047
.
>>> from transformers import SolarModel, SolarConfig
>>> # Initializing a Solar-pro style configuration
>>> configuration = SolarConfig()
>>> # Initializing a model from the Solar-pro style configuration
>>> model = SolarModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in vllm/transformers_utils/configs/solar.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
keys_to_ignore_at_inference
class-attribute
instance-attribute
¶
__init__
¶
__init__(
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-06,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
sliding_window=2047,
bskcn_1=None,
bskcn_2=None,
bskcn_3=None,
bskcn_4=None,
bskcn_tv=None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/solar.py
_rope_scaling_validation
¶
Validate the rope_scaling
configuration.