Skip to content

vllm.transformers_utils.detokenizer_utils

INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET module-attribute

INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET = 5

_convert_tokens_to_string_with_added_encoders

_convert_tokens_to_string_with_added_encoders(
    tokenizer: AnyTokenizer,
    output_tokens: list[str],
    skip_special_tokens: bool,
    spaces_between_special_tokens: bool,
) -> str
Source code in vllm/transformers_utils/detokenizer_utils.py
def _convert_tokens_to_string_with_added_encoders(
    tokenizer: AnyTokenizer,
    output_tokens: list[str],
    skip_special_tokens: bool,
    spaces_between_special_tokens: bool,
) -> str:
    # Adapted from
    # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921
    # NOTE(woosuk): The following code is slow because it runs a for loop over
    # the output_tokens. In Python, running a for loop over a list can be slow
    # even when the loop body is very simple.
    sub_texts: list[str] = []
    current_sub_text: list[str] = []
    all_special_tokens = set(tokenizer.all_special_tokens)
    for token in output_tokens:
        if skip_special_tokens and token in all_special_tokens:
            continue
        if token in tokenizer.get_added_vocab():
            if current_sub_text:
                sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
                sub_texts.append(sub_text)
                current_sub_text = []
            sub_texts.append(token)
        else:
            current_sub_text.append(token)
    if current_sub_text:
        sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
        sub_texts.append(sub_text)
    if spaces_between_special_tokens:
        return " ".join(sub_texts)
    else:
        return "".join(sub_texts)

_replace_none_with_empty

_replace_none_with_empty(tokens: list[Optional[str]])
Source code in vllm/transformers_utils/detokenizer_utils.py
def _replace_none_with_empty(tokens: list[Optional[str]]):
    for i, token in enumerate(tokens):
        if token is None:
            tokens[i] = ""

convert_ids_list_to_tokens

convert_ids_list_to_tokens(
    tokenizer: AnyTokenizer, token_ids: list[int]
) -> list[str]

Detokenize the input ids individually.

Parameters:

Name Type Description Default
tokenizer AnyTokenizer

tokenizer used by model under test

required
token_ids list[int]

convert these tokens (Python list form)

required

Returns:

Type Description
list[str]

Python list of token string representations

Source code in vllm/transformers_utils/detokenizer_utils.py
def convert_ids_list_to_tokens(
    tokenizer: AnyTokenizer,
    token_ids: list[int],
) -> list[str]:
    """Detokenize the input ids individually.

    Args:
      tokenizer: tokenizer used by model under test
      token_ids: convert these tokens (Python list form)

    Returns:
      Python list of token string representations

    """
    token_str_lst = tokenizer.convert_ids_to_tokens(token_ids)
    _replace_none_with_empty(token_str_lst)  # type: ignore
    return token_str_lst

convert_prompt_ids_to_tokens

convert_prompt_ids_to_tokens(
    tokenizer: AnyTokenizer,
    prompt_ids: list[int],
    skip_special_tokens: bool = False,
) -> tuple[list[str], int, int]

Converts the prompt ids to tokens and returns the tokens and offsets for incremental detokenization.

Note that not all tokens are converted to strings. Only the tokens that are necessary for incremental detokenization are converted to strings.

Source code in vllm/transformers_utils/detokenizer_utils.py
def convert_prompt_ids_to_tokens(
    tokenizer: AnyTokenizer,
    prompt_ids: list[int],
    skip_special_tokens: bool = False,
) -> tuple[list[str], int, int]:
    """Converts the prompt ids to tokens and returns the tokens and offsets
    for incremental detokenization.

    Note that not all tokens are converted to strings. Only the tokens that
    are necessary for incremental detokenization are converted to strings.
    """
    # We do not need to convert the whole prompt to tokens.
    # Offset a little more in case we have special tokens.
    new_tokens = tokenizer.convert_ids_to_tokens(
        prompt_ids[-INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET - 2:],
        skip_special_tokens=skip_special_tokens)
    read_offset = len(new_tokens)
    prefix_offset = max(
        read_offset - INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET, 0)
    # This is required to guard against out-of-vocab prompt token ids
    _replace_none_with_empty(new_tokens)  # type: ignore[arg-type]
    return new_tokens, prefix_offset, read_offset

detokenize_incrementally

detokenize_incrementally(
    tokenizer: AnyTokenizer,
    all_input_ids: list[int],
    prev_tokens: Optional[list[str]],
    prefix_offset: int,
    read_offset: int,
    skip_special_tokens: bool = False,
    spaces_between_special_tokens: bool = True,
) -> tuple[list[str], str, int, int]

Detokenizes the input ids incrementally and returns the new tokens and the new text.

If prev_tokens is None, this function will convert the input ids to tokens and return the tokens and the new text. Otherwise, it will return the new tokens and the new text.

This function will also return the new prefix offset and the new read offset to be used in the next iteration.

The offsets are necessary to defeat cleanup algorithms in the decode which decide to add a space or not depending on the surrounding ids.

Parameters:

Name Type Description Default
tokenizer AnyTokenizer

The tokenizer to use.

required
all_input_ids list[int]

The input ids. The last id is the new token id.

required
prev_tokens Optional[list[str]]

The previous tokens. If None, this function will convert the input ids to tokens and return the tokens and the new text.

required
prefix_offset int

The prefix offset.

required
read_offset int

The read offset.

required
skip_special_tokens bool

Whether to skip special tokens.

False
spaces_between_special_tokens bool

Whether to add spaces between special tokens.

True
Source code in vllm/transformers_utils/detokenizer_utils.py
def detokenize_incrementally(
    tokenizer: AnyTokenizer,
    all_input_ids: list[int],
    prev_tokens: Optional[list[str]],
    prefix_offset: int,
    read_offset: int,
    skip_special_tokens: bool = False,
    spaces_between_special_tokens: bool = True,
) -> tuple[list[str], str, int, int]:
    """Detokenizes the input ids incrementally and returns the new tokens
    and the new text.

    If `prev_tokens` is None, this function will convert the input ids to
    tokens and return the tokens and the new text. Otherwise, it will return the
    new tokens and the new text.

    This function will also return the new prefix offset and the new read
    offset to be used in the next iteration.

    The offsets are necessary to defeat cleanup algorithms in the decode which
    decide to add a space or not depending on the surrounding ids.

    Args:
        tokenizer: The tokenizer to use.
        all_input_ids: The input ids. The last id is the new token id.
        prev_tokens: The previous tokens. If None, this function will convert
            the input ids to tokens and return the tokens and the new text.
        prefix_offset: The prefix offset.
        read_offset: The read offset.
        skip_special_tokens: Whether to skip special tokens.
        spaces_between_special_tokens: Whether to add spaces between special
            tokens.
    """
    new_token_id = all_input_ids[-1]
    # This is the first iteration for this sequence
    is_first_iter = prev_tokens is None
    if is_first_iter:
        (prev_tokens, prefix_offset,
         read_offset) = convert_prompt_ids_to_tokens(
             tokenizer,
             all_input_ids[:-1],
             skip_special_tokens=skip_special_tokens)
    assert prev_tokens is not None

    # If the new token id is out of bounds, return an empty string.
    if 0 <= new_token_id < len(tokenizer):
        # Put new_token_id in a list so skip_special_tokens is respected
        new_tokens = tokenizer.convert_ids_to_tokens(
            [new_token_id], skip_special_tokens=skip_special_tokens)
        if isinstance(new_tokens, str):
            new_tokens = [new_tokens]
    else:
        new_tokens = [""]
    output_tokens = prev_tokens + new_tokens

    # If this is the first iteration, return all tokens.
    if is_first_iter:
        new_tokens = output_tokens

    # The prefix text is necessary only to defeat cleanup algorithms in
    # the decode which decide to add a space or not depending on the
    # surrounding ids.
    if tokenizer.is_fast or not tokenizer.get_added_vocab():
        prefix_text = tokenizer.convert_tokens_to_string(
            output_tokens[prefix_offset:read_offset])
        new_text = tokenizer.convert_tokens_to_string(
            output_tokens[prefix_offset:])
    else:
        prefix_text = _convert_tokens_to_string_with_added_encoders(
            tokenizer,
            output_tokens[prefix_offset:read_offset],
            skip_special_tokens=skip_special_tokens,
            spaces_between_special_tokens=spaces_between_special_tokens,
        )
        new_text = _convert_tokens_to_string_with_added_encoders(
            tokenizer,
            output_tokens[prefix_offset:],
            skip_special_tokens=skip_special_tokens,
            spaces_between_special_tokens=spaces_between_special_tokens,
        )

    if len(new_text) <= len(prefix_text) or new_text.endswith("�"):
        # utf-8 char at the end means it's a potential unfinished byte sequence
        # from byte fallback tokenization.
        # If it's in the middle, it's probably a real invalid id generated
        # by the model
        return new_tokens, "", prefix_offset, read_offset

    new_text = new_text[len(prefix_text):]
    return new_tokens, new_text, read_offset, len(output_tokens)