vllm.transformers_utils.detokenizer
Detokenizer
¶
Provides methods to decode the output of a model into text.
Source code in vllm/transformers_utils/detokenizer.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
__init__
¶
__init__(tokenizer_group: TokenizerGroup)
decode_prompt_logprobs_inplace
¶
decode_prompt_logprobs_inplace(
seq_group: SequenceGroup,
prompt_logprobs: list[Optional[dict[int, Logprob]]],
position_offset: int,
) -> None
Decodes the logprobs for the prompt of a sequence group.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seq_group
|
SequenceGroup
|
The sequence group to decode. |
required |
prompt_logprobs
|
list[Optional[dict[int, Logprob]]]
|
The logprobs to decode. |
required |
position_offset
|
int
|
Offset of the first index of the logprobs relative to the start of the sequence (for chunked prefill). |
required |
Returns:
Type | Description |
---|---|
None
|
The prompt logprobs with the decoded tokens. |
Source code in vllm/transformers_utils/detokenizer.py
decode_sequence_inplace
¶
decode_sequence_inplace(
seq: Sequence, prms: SamplingParams
) -> int
Decodes the new token for a sequence. In-place operation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seq
|
Sequence
|
The sequence to decode. |
required |
prms
|
SamplingParams
|
The sampling parameters used to generate the sequence. |
required |
Returns:
Type | Description |
---|---|
int
|
The number of characters added to the output text. |
Source code in vllm/transformers_utils/detokenizer.py
get_tokenizer_for_seq
¶
get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer
Returns the HF tokenizer to use for a given sequence.