Skip to content

vllm.transformers_utils.configs.deepseek_vl2

DeepseekV2Config

Bases: PretrainedConfig

Source code in vllm/transformers_utils/configs/deepseek_vl2.py
class DeepseekV2Config(PretrainedConfig):

    model_type = "deepseek_v2"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=102400,
        hidden_size=4096,
        intermediate_size=11008,
        moe_intermediate_size=1407,
        num_hidden_layers=30,
        num_attention_heads=32,
        num_key_value_heads=32,
        n_shared_experts=None,
        n_routed_experts=None,
        ep_size=1,
        routed_scaling_factor=1.0,
        kv_lora_rank=512,
        q_lora_rank=1536,
        qk_rope_head_dim=64,
        v_head_dim=128,
        qk_nope_head_dim=128,
        topk_method='gready',
        n_group=None,
        topk_group=None,
        num_experts_per_tok=None,
        moe_layer_freq=1,
        first_k_dense_replace=0,
        norm_topk_prob=False,
        scoring_func='softmax',
        aux_loss_alpha=0.001,
        seq_aux=True,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=100000,
        eos_token_id=100001,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        use_mla=True,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.moe_intermediate_size = moe_intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.n_shared_experts = n_shared_experts
        self.n_routed_experts = n_routed_experts
        self.ep_size = ep_size
        self.routed_scaling_factor = routed_scaling_factor
        self.kv_lora_rank = kv_lora_rank
        self.q_lora_rank = q_lora_rank
        self.qk_rope_head_dim = qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.qk_nope_head_dim = qk_nope_head_dim
        self.topk_method = topk_method
        self.n_group = n_group
        self.topk_group = topk_group
        self.num_experts_per_tok = num_experts_per_tok
        self.moe_layer_freq = moe_layer_freq
        self.first_k_dense_replace = first_k_dense_replace
        self.norm_topk_prob = norm_topk_prob
        self.scoring_func = scoring_func
        self.aux_loss_alpha = aux_loss_alpha
        self.seq_aux = seq_aux
        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = float(rms_norm_eps)
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.use_mla = use_mla

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

attention_bias instance-attribute

attention_bias = attention_bias

attention_dropout instance-attribute

attention_dropout = attention_dropout

aux_loss_alpha instance-attribute

aux_loss_alpha = aux_loss_alpha

ep_size instance-attribute

ep_size = ep_size

first_k_dense_replace instance-attribute

first_k_dense_replace = first_k_dense_replace

hidden_act instance-attribute

hidden_act = hidden_act

hidden_size instance-attribute

hidden_size = hidden_size

initializer_range instance-attribute

initializer_range = initializer_range

intermediate_size instance-attribute

intermediate_size = intermediate_size

keys_to_ignore_at_inference class-attribute instance-attribute

keys_to_ignore_at_inference = ['past_key_values']

kv_lora_rank instance-attribute

kv_lora_rank = kv_lora_rank

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

model_type class-attribute instance-attribute

model_type = 'deepseek_v2'

moe_intermediate_size instance-attribute

moe_intermediate_size = moe_intermediate_size

moe_layer_freq instance-attribute

moe_layer_freq = moe_layer_freq

n_group instance-attribute

n_group = n_group

n_routed_experts instance-attribute

n_routed_experts = n_routed_experts

n_shared_experts instance-attribute

n_shared_experts = n_shared_experts

norm_topk_prob instance-attribute

norm_topk_prob = norm_topk_prob

num_attention_heads instance-attribute

num_attention_heads = num_attention_heads

num_experts_per_tok instance-attribute

num_experts_per_tok = num_experts_per_tok

num_hidden_layers instance-attribute

num_hidden_layers = num_hidden_layers

num_key_value_heads instance-attribute

num_key_value_heads = num_key_value_heads

pretraining_tp instance-attribute

pretraining_tp = pretraining_tp

q_lora_rank instance-attribute

q_lora_rank = q_lora_rank

qk_nope_head_dim instance-attribute

qk_nope_head_dim = qk_nope_head_dim

qk_rope_head_dim instance-attribute

qk_rope_head_dim = qk_rope_head_dim

rms_norm_eps instance-attribute

rms_norm_eps = float(rms_norm_eps)

rope_scaling instance-attribute

rope_scaling = rope_scaling

rope_theta instance-attribute

rope_theta = rope_theta

routed_scaling_factor instance-attribute

routed_scaling_factor = routed_scaling_factor

scoring_func instance-attribute

scoring_func = scoring_func

seq_aux instance-attribute

seq_aux = seq_aux

topk_group instance-attribute

topk_group = topk_group

topk_method instance-attribute

topk_method = topk_method

use_cache instance-attribute

use_cache = use_cache

use_mla instance-attribute

use_mla = use_mla

v_head_dim instance-attribute

v_head_dim = v_head_dim

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    vocab_size=102400,
    hidden_size=4096,
    intermediate_size=11008,
    moe_intermediate_size=1407,
    num_hidden_layers=30,
    num_attention_heads=32,
    num_key_value_heads=32,
    n_shared_experts=None,
    n_routed_experts=None,
    ep_size=1,
    routed_scaling_factor=1.0,
    kv_lora_rank=512,
    q_lora_rank=1536,
    qk_rope_head_dim=64,
    v_head_dim=128,
    qk_nope_head_dim=128,
    topk_method="gready",
    n_group=None,
    topk_group=None,
    num_experts_per_tok=None,
    moe_layer_freq=1,
    first_k_dense_replace=0,
    norm_topk_prob=False,
    scoring_func="softmax",
    aux_loss_alpha=0.001,
    seq_aux=True,
    hidden_act="silu",
    max_position_embeddings=2048,
    initializer_range=0.02,
    rms_norm_eps=1e-06,
    use_cache=True,
    pad_token_id=None,
    bos_token_id=100000,
    eos_token_id=100001,
    pretraining_tp=1,
    tie_word_embeddings=False,
    rope_theta=10000.0,
    rope_scaling=None,
    attention_bias=False,
    attention_dropout=0.0,
    use_mla=True,
    **kwargs,
)
Source code in vllm/transformers_utils/configs/deepseek_vl2.py
def __init__(
    self,
    vocab_size=102400,
    hidden_size=4096,
    intermediate_size=11008,
    moe_intermediate_size=1407,
    num_hidden_layers=30,
    num_attention_heads=32,
    num_key_value_heads=32,
    n_shared_experts=None,
    n_routed_experts=None,
    ep_size=1,
    routed_scaling_factor=1.0,
    kv_lora_rank=512,
    q_lora_rank=1536,
    qk_rope_head_dim=64,
    v_head_dim=128,
    qk_nope_head_dim=128,
    topk_method='gready',
    n_group=None,
    topk_group=None,
    num_experts_per_tok=None,
    moe_layer_freq=1,
    first_k_dense_replace=0,
    norm_topk_prob=False,
    scoring_func='softmax',
    aux_loss_alpha=0.001,
    seq_aux=True,
    hidden_act="silu",
    max_position_embeddings=2048,
    initializer_range=0.02,
    rms_norm_eps=1e-6,
    use_cache=True,
    pad_token_id=None,
    bos_token_id=100000,
    eos_token_id=100001,
    pretraining_tp=1,
    tie_word_embeddings=False,
    rope_theta=10000.0,
    rope_scaling=None,
    attention_bias=False,
    attention_dropout=0.0,
    use_mla=True,
    **kwargs,
):
    self.vocab_size = vocab_size
    self.max_position_embeddings = max_position_embeddings
    self.hidden_size = hidden_size
    self.intermediate_size = intermediate_size
    self.moe_intermediate_size = moe_intermediate_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.n_shared_experts = n_shared_experts
    self.n_routed_experts = n_routed_experts
    self.ep_size = ep_size
    self.routed_scaling_factor = routed_scaling_factor
    self.kv_lora_rank = kv_lora_rank
    self.q_lora_rank = q_lora_rank
    self.qk_rope_head_dim = qk_rope_head_dim
    self.v_head_dim = v_head_dim
    self.qk_nope_head_dim = qk_nope_head_dim
    self.topk_method = topk_method
    self.n_group = n_group
    self.topk_group = topk_group
    self.num_experts_per_tok = num_experts_per_tok
    self.moe_layer_freq = moe_layer_freq
    self.first_k_dense_replace = first_k_dense_replace
    self.norm_topk_prob = norm_topk_prob
    self.scoring_func = scoring_func
    self.aux_loss_alpha = aux_loss_alpha
    self.seq_aux = seq_aux
    # for backward compatibility
    if num_key_value_heads is None:
        num_key_value_heads = num_attention_heads

    self.num_key_value_heads = num_key_value_heads
    self.hidden_act = hidden_act
    self.initializer_range = initializer_range
    self.rms_norm_eps = float(rms_norm_eps)
    self.pretraining_tp = pretraining_tp
    self.use_cache = use_cache
    self.rope_theta = rope_theta
    self.rope_scaling = rope_scaling
    self.attention_bias = attention_bias
    self.attention_dropout = attention_dropout
    self.use_mla = use_mla

    super().__init__(
        pad_token_id=pad_token_id,
        bos_token_id=bos_token_id,
        eos_token_id=eos_token_id,
        tie_word_embeddings=tie_word_embeddings,
        **kwargs,
    )

DeepseekVLV2Config

Bases: PretrainedConfig

Source code in vllm/transformers_utils/configs/deepseek_vl2.py
class DeepseekVLV2Config(PretrainedConfig):
    model_type = "deepseek_vl_v2"
    vision_config: VisionEncoderConfig
    projector_config: MlpProjectorConfig

    tile_tag: str = "2D"
    global_view_pos: str = "head"
    candidate_resolutions: tuple[tuple[int, int]] = ((384, 384), )

    def __init__(self,
                 tile_tag: str = "tile_tag",
                 global_view_pos: str = "head",
                 candidate_resolutions: tuple[tuple[int,
                                                    int]] = ((384, 384), ),
                 **kwargs):
        super().__init__(**kwargs)

        vision_config = kwargs.get("vision_config", {})
        self.vision_config = VisionEncoderConfig(**vision_config)

        projector_config = kwargs.get("projector_config", {})
        self.projector_config = MlpProjectorConfig(**projector_config)

        language_config = kwargs.get("language_config", {})
        self.text_config = DeepseekV2Config(**language_config)

        self.tile_tag = tile_tag
        self.global_view_pos = global_view_pos
        self.candidate_resolutions = candidate_resolutions
        self.vocab_size = self.text_config.vocab_size

candidate_resolutions class-attribute instance-attribute

candidate_resolutions: tuple[tuple[int, int]] = (
    candidate_resolutions
)

global_view_pos class-attribute instance-attribute

global_view_pos: str = global_view_pos

model_type class-attribute instance-attribute

model_type = 'deepseek_vl_v2'

projector_config instance-attribute

projector_config: MlpProjectorConfig = MlpProjectorConfig(
    **projector_config
)

text_config instance-attribute

text_config = DeepseekV2Config(**language_config)

tile_tag class-attribute instance-attribute

tile_tag: str = tile_tag

vision_config instance-attribute

vision_config: VisionEncoderConfig = VisionEncoderConfig(
    **vision_config
)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    tile_tag: str = "tile_tag",
    global_view_pos: str = "head",
    candidate_resolutions: tuple[tuple[int, int]] = (
        (384, 384),
    ),
    **kwargs,
)
Source code in vllm/transformers_utils/configs/deepseek_vl2.py
def __init__(self,
             tile_tag: str = "tile_tag",
             global_view_pos: str = "head",
             candidate_resolutions: tuple[tuple[int,
                                                int]] = ((384, 384), ),
             **kwargs):
    super().__init__(**kwargs)

    vision_config = kwargs.get("vision_config", {})
    self.vision_config = VisionEncoderConfig(**vision_config)

    projector_config = kwargs.get("projector_config", {})
    self.projector_config = MlpProjectorConfig(**projector_config)

    language_config = kwargs.get("language_config", {})
    self.text_config = DeepseekV2Config(**language_config)

    self.tile_tag = tile_tag
    self.global_view_pos = global_view_pos
    self.candidate_resolutions = candidate_resolutions
    self.vocab_size = self.text_config.vocab_size

MlpProjectorConfig

Bases: PretrainedConfig

Source code in vllm/transformers_utils/configs/deepseek_vl2.py
class MlpProjectorConfig(PretrainedConfig):
    model_type = "mlp_projector"
    projector_type: str = "downsample_mlp_gelu"
    input_dim: int = 1152
    n_embed: int = 2048
    depth: int = 2
    mlp_ratio: int = 1
    downsample_ratio: int = 2
    token_pooling: bool = False

    def __init__(self,
                 projector_type: str = "downsample_mlp_gelu",
                 input_dim: int = 1152,
                 n_embed: int = 2048,
                 depth: int = 2,
                 mlp_ratio: int = 1,
                 downsample_ratio: int = 2,
                 **kwargs):
        self.projector_type = projector_type
        self.input_dim = input_dim
        self.n_embed = n_embed
        self.depth = depth
        self.mlp_ratio = mlp_ratio
        self.downsample_ratio = downsample_ratio

        super().__init__(**kwargs)

depth class-attribute instance-attribute

depth: int = depth

downsample_ratio class-attribute instance-attribute

downsample_ratio: int = downsample_ratio

input_dim class-attribute instance-attribute

input_dim: int = input_dim

mlp_ratio class-attribute instance-attribute

mlp_ratio: int = mlp_ratio

model_type class-attribute instance-attribute

model_type = 'mlp_projector'

n_embed class-attribute instance-attribute

n_embed: int = n_embed

projector_type class-attribute instance-attribute

projector_type: str = projector_type

token_pooling class-attribute instance-attribute

token_pooling: bool = False

__init__

__init__(
    projector_type: str = "downsample_mlp_gelu",
    input_dim: int = 1152,
    n_embed: int = 2048,
    depth: int = 2,
    mlp_ratio: int = 1,
    downsample_ratio: int = 2,
    **kwargs,
)
Source code in vllm/transformers_utils/configs/deepseek_vl2.py
def __init__(self,
             projector_type: str = "downsample_mlp_gelu",
             input_dim: int = 1152,
             n_embed: int = 2048,
             depth: int = 2,
             mlp_ratio: int = 1,
             downsample_ratio: int = 2,
             **kwargs):
    self.projector_type = projector_type
    self.input_dim = input_dim
    self.n_embed = n_embed
    self.depth = depth
    self.mlp_ratio = mlp_ratio
    self.downsample_ratio = downsample_ratio

    super().__init__(**kwargs)

VisionEncoderConfig

Bases: PretrainedConfig

Source code in vllm/transformers_utils/configs/deepseek_vl2.py
class VisionEncoderConfig(PretrainedConfig):
    model_type: str = "vision"

    model_name: str = "vit_so400m_patch14_siglip_384.webli"
    image_size: int = 384
    patch_size: int = 16
    width: int = 1024
    layers: int = 24
    heads: int = 16
    mlp_ratio: int = 4
    global_pool: str = "map"
    ignore_head: bool = True
    class_token: bool = False
    num_classes: int = 0
    use_checkpoint: bool = False
    weight_init: str = "skip"
    deterministic: bool = False
    num_recomputing_layers: int = 0

    def __init__(self,
                 model_name: str = "vit_so400m_patch14_siglip_384.webli",
                 image_size: int = 384,
                 patch_size: int = 16,
                 width: int = 1024,
                 layers: int = 24,
                 heads: int = 16,
                 mlp_ratio: int = 4,
                 global_pool: str = "map",
                 ignore_head: bool = True,
                 class_token: bool = False,
                 num_classes: int = 0,
                 use_checkpoint: bool = False,
                 **kwargs):
        self.model_name = model_name
        self.image_size = image_size
        self.patch_size = patch_size
        self.width = width
        self.layers = layers
        self.heads = heads
        self.mlp_ratio = mlp_ratio
        self.global_pool = global_pool
        self.ignore_head = ignore_head
        self.class_token = class_token
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint

        super().__init__(**kwargs)

class_token class-attribute instance-attribute

class_token: bool = class_token

deterministic class-attribute instance-attribute

deterministic: bool = False

global_pool class-attribute instance-attribute

global_pool: str = global_pool

heads class-attribute instance-attribute

heads: int = heads

ignore_head class-attribute instance-attribute

ignore_head: bool = ignore_head

image_size class-attribute instance-attribute

image_size: int = image_size

layers class-attribute instance-attribute

layers: int = layers

mlp_ratio class-attribute instance-attribute

mlp_ratio: int = mlp_ratio

model_name class-attribute instance-attribute

model_name: str = model_name

model_type class-attribute instance-attribute

model_type: str = 'vision'

num_classes class-attribute instance-attribute

num_classes: int = num_classes

num_recomputing_layers class-attribute instance-attribute

num_recomputing_layers: int = 0

patch_size class-attribute instance-attribute

patch_size: int = patch_size

use_checkpoint class-attribute instance-attribute

use_checkpoint: bool = use_checkpoint

weight_init class-attribute instance-attribute

weight_init: str = 'skip'

width class-attribute instance-attribute

width: int = width

__init__

__init__(
    model_name: str = "vit_so400m_patch14_siglip_384.webli",
    image_size: int = 384,
    patch_size: int = 16,
    width: int = 1024,
    layers: int = 24,
    heads: int = 16,
    mlp_ratio: int = 4,
    global_pool: str = "map",
    ignore_head: bool = True,
    class_token: bool = False,
    num_classes: int = 0,
    use_checkpoint: bool = False,
    **kwargs,
)
Source code in vllm/transformers_utils/configs/deepseek_vl2.py
def __init__(self,
             model_name: str = "vit_so400m_patch14_siglip_384.webli",
             image_size: int = 384,
             patch_size: int = 16,
             width: int = 1024,
             layers: int = 24,
             heads: int = 16,
             mlp_ratio: int = 4,
             global_pool: str = "map",
             ignore_head: bool = True,
             class_token: bool = False,
             num_classes: int = 0,
             use_checkpoint: bool = False,
             **kwargs):
    self.model_name = model_name
    self.image_size = image_size
    self.patch_size = patch_size
    self.width = width
    self.layers = layers
    self.heads = heads
    self.mlp_ratio = mlp_ratio
    self.global_pool = global_pool
    self.ignore_head = ignore_head
    self.class_token = class_token
    self.num_classes = num_classes
    self.use_checkpoint = use_checkpoint

    super().__init__(**kwargs)