Skip to content

vllm.transformers_utils.configs.nemotron_h

NemotronH model configuration

logger module-attribute

logger = get_logger(__name__)

NemotronHConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [NemotronHModel]. It is used to instantiate a NemotronH model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the NemotronH-v0.1 model. Args: vocab_size (int, optional, defaults to 131072): Vocabulary size of the NemotronH model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling [NemotronHModel] tie_word_embeddings (bool, optional, defaults to False): Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the model has a output word embedding layer. hidden_size (int, optional, defaults to 4096): Dimension of the hidden representations. intermediate_size (int, optional, defaults to 21504): Dimension of the MLP representations. num_hidden_layers (int, optional, defaults to 52): Number of hidden layers in the Transformer encoder. hybrid_override_pattern (str, optional, defaults to "M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"): The pattern of the hybrid model. The pattern is a string of characters where each character represents M: Mamba2, : Attention, -: MLP num_attention_heads (int, optional, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. attention_head_dim (int, optional, defaults to 128): Dimension of each attention head. num_key_value_heads (int, optional, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. mlp_hidden_act (str, optional, defaults to "relu2"): The non-linear activation function in the MLP layers. attention_bias (bool, optional, defaults to False): Whether to use bias in attention layers. mlp_bias (bool, optional, defaults to False): Whether to use bias in MLP layers. use_bias (bool, optional, defaults to False): Whether to use bias in the model. initializer_range (float, optional, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_epsilon (float, optional, defaults to 1e-5): The epsilon used by the layer normalization layers. residual_in_fp32 (bool, optional, defaults to False): Whether or not residuals should be in float32. If set to False residuals will keep the same dtype as the rest of the model. use_cache (bool, optional, defaults to True): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True. num_logits_to_keep (int or None, optional, defaults to 1): Number of prompt logits to calculate during generation. If None, all logits will be calculated. If an integer value, only last num_logits_to_keep logits will be calculated. pad_token_id (int, optional, defaults to 0): The id of the padding token. bos_token_id (int, optional, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (int, optional, defaults to 2): The id of the "end-of-sequence" token. sliding_window (int, optional, defaults to None): Sliding window attention window size. max_position_embeddings (int, optional, defaults to 4096): The maximum sequence length that this model might ever be used with. attention_dropout (float, optional, defaults to 0.0): The dropout ratio for the attention probabilities. hidden_dropout (float, optional, defaults to 0.0): The dropout ratio for the hidden states. use_mamba_kernels (bool, optional, defaults to True): Flag indicating whether or not to use the fast mamba kernels. These are available only if mamba-ssm and causal-conv1d are installed, and the mamba modules are running on a CUDA device. ssm_state_size (int, optional, defaults to 128): The dimension of the mamba state space latents. mamba_num_heads (int, optional, defaults to 128): Number of heads in Mamba layers. mamba_n_groups (int, optional, defaults to 8): Number of groups in Mamba layers. mamba_head_dim (int, optional, defaults to 64): Dimension of each Mamba head. mamba_d_conv (int, optional, defaults to 4): The size of the mamba convolution kernel. mamba_expand (int, optional, defaults to 2): Expanding factor used to determine the mamba intermediate size. mamba_hidden_act (str, optional, defaults to "silu"): The non-linear activation function in the Mamba layers. mamba_dt_min (float, optional, defaults to 0.001): Minimum value for the time step in Mamba. mamba_dt_max (float, optional, defaults to 0.1): Maximum value for the time step in Mamba. mamba_dt_limit (tuple, optional, defaults to (0.0, float("inf"))): Limits for the time step in Mamba. mamba_dt_init_floor (float, optional, defaults to 1e-4): Floor value for time step initialization in Mamba. mamba_conv_bias (bool, optional, defaults to True): Whether to use bias in the convolution layer of the mamba mixer block. mamba_proj_bias (bool, optional, defaults to False): Whether to use bias in the input and output projections of the mamba mixer block. mamba_chunk_size (int, optional, defaults to 256): Size of chunks for Mamba processing. rescale_prenorm_residual (bool, optional*, defaults to True): Whether to rescale the pre-normalization residual connections.

Source code in vllm/transformers_utils/configs/nemotron_h.py
class NemotronHConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a
    [`NemotronHModel`]. It is used to instantiate a NemotronH model according
    to the specified arguments, defining the model architecture. Instantiating
    a configuration with the defaults will yield a similar configuration to
    that of the NemotronH-v0.1 model.
    Args:
        vocab_size (`int`, *optional*, defaults to 131072):
            Vocabulary size of the NemotronH model. Defines the number of
            different tokens that can be represented by the `inputs_ids`
            passed when calling [`NemotronHModel`]
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be
            tied. Note that this is only relevant if the model has a output
            word embedding layer.
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 21504):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 52):
            Number of hidden layers in the Transformer encoder.
        hybrid_override_pattern (`str`, *optional*, defaults to
            `"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`):
            The pattern of the hybrid model. The pattern is a string of
            characters where each character represents
            M: Mamba2, *: Attention, -: MLP
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the
            Transformer encoder.
        attention_head_dim (`int`, *optional*, defaults to 128):
            Dimension of each attention head.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to
            implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use
            Multi Head Attention (MHA), if `num_key_value_heads=1` the model
            will use Multi Query Attention (MQA) otherwise GQA is used.
        mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
            The non-linear activation function in the MLP layers.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in attention layers.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in MLP layers.
        use_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in the model.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        residual_in_fp32 (`bool`, *optional*, defaults to `False`):
            Whether or not residuals should be in `float32`. If set to `False`
            residuals will keep the same `dtype` as the rest of the model.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values
            attentions (not used by all models). Only relevant if
            `config.is_decoder=True`.
        num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
            Number of prompt logits to calculate during generation. If `None`,
            all logits will be calculated. If an integer value, only last
            `num_logits_to_keep` logits will be calculated.
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        sliding_window (`int`, *optional*, defaults to None):
            Sliding window attention window size.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used
            with.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the hidden states.
        use_mamba_kernels (`bool`, *optional*, defaults to `True`):
            Flag indicating whether or not to use the fast mamba kernels.
            These are available only if `mamba-ssm` and `causal-conv1d`
            are installed, and the mamba modules are running on a CUDA device.
        ssm_state_size (`int`, *optional*, defaults to 128):
            The dimension of the mamba state space latents.
        mamba_num_heads (`int`, *optional*, defaults to 128):
            Number of heads in Mamba layers.
        mamba_n_groups (`int`, *optional*, defaults to 8):
            Number of groups in Mamba layers.
        mamba_head_dim (`int`, *optional*, defaults to 64):
            Dimension of each Mamba head.
        mamba_d_conv (`int`, *optional*, defaults to 4):
            The size of the mamba convolution kernel.
        mamba_expand (`int`, *optional*, defaults to 2):
            Expanding factor used to determine the mamba intermediate size.
        mamba_hidden_act (`str`, *optional*, defaults to "silu"):
            The non-linear activation function in the Mamba layers.
        mamba_dt_min (`float`, *optional*, defaults to 0.001):
            Minimum value for the time step in Mamba.
        mamba_dt_max (`float`, *optional*, defaults to 0.1):
            Maximum value for the time step in Mamba.
        mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
            Limits for the time step in Mamba.
        mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
            Floor value for time step initialization in Mamba.
        mamba_conv_bias (`bool`, *optional*, defaults to `True`):
            Whether to use bias in the convolution layer of the mamba mixer
            block.
        mamba_proj_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in the input and output projections of the
            mamba mixer block.
        mamba_chunk_size (`int`, *optional*, defaults to 256):
            Size of chunks for Mamba processing.
        rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
            Whether to rescale the pre-normalization residual connections.
    """

    model_type = "nemotron_h"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=131072,
        tie_word_embeddings=False,
        hidden_size=4096,
        intermediate_size=21504,
        num_hidden_layers=52,
        hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
        num_attention_heads=32,
        attention_head_dim=128,
        num_key_value_heads=8,  # nemo: num_query_groups
        mlp_hidden_act="relu2",
        attention_bias=False,
        mlp_bias=False,
        use_bias=False,
        initializer_range=0.02,  # nemo: init_method_std
        layer_norm_epsilon=1e-5,  # nemo: layernorm_epsilon
        residual_in_fp32=False,  #  Megatron Core default value
        use_cache=True,
        num_logits_to_keep=1,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        sliding_window=None,
        max_position_embeddings=4096,
        attention_dropout=0.0,
        hidden_dropout=0.0,  # * ADDED
        use_mamba_kernels=True,
        ssm_state_size=128,  # mamba_state_size
        mamba_num_heads=128,
        mamba_n_groups=8,  # nemo: mamba_ssm_ngroups = num_heads
        mamba_head_dim=64,
        mamba_d_conv=4,
        mamba_expand=2,
        mamba_hidden_act="silu",
        mamba_dt_min=0.001,
        mamba_dt_max=0.1,
        mamba_dt_limit=(0.0, float("inf")),
        mamba_dt_init_floor=1e-4,
        mamba_conv_bias=True,
        mamba_proj_bias=False,
        mamba_chunk_size=256,
        rescale_prenorm_residual=True,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.tie_word_embeddings = tie_word_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.hybrid_override_pattern = hybrid_override_pattern
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.sliding_window = sliding_window
        self.max_position_embeddings = max_position_embeddings
        self.attention_dropout = attention_dropout
        self.hidden_dropout = hidden_dropout

        # Validate hybrid_override_pattern
        # M: Mamba2, *: Attention, -: MLP
        assert len(self.hybrid_override_pattern) == self.num_hidden_layers, (
            "hybrid_override_pattern must have same length as "
            "num_hidden_layers")
        assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), (
            "hybrid_override_pattern must only contain characters "
            "'M', '*', or '-'")

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.mlp_hidden_act = mlp_hidden_act
        self.attention_bias = attention_bias
        self.mlp_bias = mlp_bias
        self.use_bias = use_bias
        self.initializer_range = initializer_range
        self.layer_norm_epsilon = layer_norm_epsilon
        self.residual_in_fp32 = residual_in_fp32

        self.use_cache = use_cache
        self.num_logits_to_keep = num_logits_to_keep

        self.use_mamba_kernels = use_mamba_kernels
        self.n_groups = mamba_n_groups
        self.mamba_head_dim = mamba_head_dim
        self.ssm_state_size = ssm_state_size
        self.mamba_num_heads = mamba_num_heads
        self.conv_kernel = mamba_d_conv
        self.expand = mamba_expand
        self.mamba_hidden_act = mamba_hidden_act
        self.time_step_min = mamba_dt_min
        self.time_step_max = mamba_dt_max
        self.time_step_limit = mamba_dt_limit
        self.time_step_floor = mamba_dt_init_floor
        self.use_conv_bias = mamba_conv_bias
        self.mamba_proj_bias = mamba_proj_bias
        self.chunk_size = mamba_chunk_size
        self.rescale_prenorm_residual = rescale_prenorm_residual

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    @property
    def layers_block_type(self):
        return [
            "mamba" if self.hybrid_override_pattern[i] == "M" else
            "attention" if self.hybrid_override_pattern[i] == "*" else "mlp"
            for i in range(self.num_hidden_layers)
        ]

attention_bias instance-attribute

attention_bias = attention_bias

attention_dropout instance-attribute

attention_dropout = attention_dropout

attention_head_dim instance-attribute

attention_head_dim = attention_head_dim

chunk_size instance-attribute

chunk_size = mamba_chunk_size

conv_kernel instance-attribute

conv_kernel = mamba_d_conv

expand instance-attribute

expand = mamba_expand

hidden_dropout instance-attribute

hidden_dropout = hidden_dropout

hidden_size instance-attribute

hidden_size = hidden_size

hybrid_override_pattern instance-attribute

hybrid_override_pattern = hybrid_override_pattern

initializer_range instance-attribute

initializer_range = initializer_range

intermediate_size instance-attribute

intermediate_size = intermediate_size

keys_to_ignore_at_inference class-attribute instance-attribute

keys_to_ignore_at_inference = ['past_key_values']

layer_norm_epsilon instance-attribute

layer_norm_epsilon = layer_norm_epsilon

layers_block_type property

layers_block_type

mamba_head_dim instance-attribute

mamba_head_dim = mamba_head_dim

mamba_hidden_act instance-attribute

mamba_hidden_act = mamba_hidden_act

mamba_num_heads instance-attribute

mamba_num_heads = mamba_num_heads

mamba_proj_bias instance-attribute

mamba_proj_bias = mamba_proj_bias

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

mlp_bias instance-attribute

mlp_bias = mlp_bias

mlp_hidden_act instance-attribute

mlp_hidden_act = mlp_hidden_act

model_type class-attribute instance-attribute

model_type = 'nemotron_h'

n_groups instance-attribute

n_groups = mamba_n_groups

num_attention_heads instance-attribute

num_attention_heads = num_attention_heads

num_hidden_layers instance-attribute

num_hidden_layers = num_hidden_layers

num_key_value_heads instance-attribute

num_key_value_heads = num_key_value_heads

num_logits_to_keep instance-attribute

num_logits_to_keep = num_logits_to_keep

rescale_prenorm_residual instance-attribute

rescale_prenorm_residual = rescale_prenorm_residual

residual_in_fp32 instance-attribute

residual_in_fp32 = residual_in_fp32

sliding_window instance-attribute

sliding_window = sliding_window

ssm_state_size instance-attribute

ssm_state_size = ssm_state_size

tie_word_embeddings instance-attribute

tie_word_embeddings = tie_word_embeddings

time_step_floor instance-attribute

time_step_floor = mamba_dt_init_floor

time_step_limit instance-attribute

time_step_limit = mamba_dt_limit

time_step_max instance-attribute

time_step_max = mamba_dt_max

time_step_min instance-attribute

time_step_min = mamba_dt_min

use_bias instance-attribute

use_bias = use_bias

use_cache instance-attribute

use_cache = use_cache

use_conv_bias instance-attribute

use_conv_bias = mamba_conv_bias

use_mamba_kernels instance-attribute

use_mamba_kernels = use_mamba_kernels

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    vocab_size=131072,
    tie_word_embeddings=False,
    hidden_size=4096,
    intermediate_size=21504,
    num_hidden_layers=52,
    hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
    num_attention_heads=32,
    attention_head_dim=128,
    num_key_value_heads=8,
    mlp_hidden_act="relu2",
    attention_bias=False,
    mlp_bias=False,
    use_bias=False,
    initializer_range=0.02,
    layer_norm_epsilon=1e-05,
    residual_in_fp32=False,
    use_cache=True,
    num_logits_to_keep=1,
    pad_token_id=0,
    bos_token_id=1,
    eos_token_id=2,
    sliding_window=None,
    max_position_embeddings=4096,
    attention_dropout=0.0,
    hidden_dropout=0.0,
    use_mamba_kernels=True,
    ssm_state_size=128,
    mamba_num_heads=128,
    mamba_n_groups=8,
    mamba_head_dim=64,
    mamba_d_conv=4,
    mamba_expand=2,
    mamba_hidden_act="silu",
    mamba_dt_min=0.001,
    mamba_dt_max=0.1,
    mamba_dt_limit=(0.0, float("inf")),
    mamba_dt_init_floor=0.0001,
    mamba_conv_bias=True,
    mamba_proj_bias=False,
    mamba_chunk_size=256,
    rescale_prenorm_residual=True,
    **kwargs,
)
Source code in vllm/transformers_utils/configs/nemotron_h.py
def __init__(
    self,
    vocab_size=131072,
    tie_word_embeddings=False,
    hidden_size=4096,
    intermediate_size=21504,
    num_hidden_layers=52,
    hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
    num_attention_heads=32,
    attention_head_dim=128,
    num_key_value_heads=8,  # nemo: num_query_groups
    mlp_hidden_act="relu2",
    attention_bias=False,
    mlp_bias=False,
    use_bias=False,
    initializer_range=0.02,  # nemo: init_method_std
    layer_norm_epsilon=1e-5,  # nemo: layernorm_epsilon
    residual_in_fp32=False,  #  Megatron Core default value
    use_cache=True,
    num_logits_to_keep=1,
    pad_token_id=0,
    bos_token_id=1,
    eos_token_id=2,
    sliding_window=None,
    max_position_embeddings=4096,
    attention_dropout=0.0,
    hidden_dropout=0.0,  # * ADDED
    use_mamba_kernels=True,
    ssm_state_size=128,  # mamba_state_size
    mamba_num_heads=128,
    mamba_n_groups=8,  # nemo: mamba_ssm_ngroups = num_heads
    mamba_head_dim=64,
    mamba_d_conv=4,
    mamba_expand=2,
    mamba_hidden_act="silu",
    mamba_dt_min=0.001,
    mamba_dt_max=0.1,
    mamba_dt_limit=(0.0, float("inf")),
    mamba_dt_init_floor=1e-4,
    mamba_conv_bias=True,
    mamba_proj_bias=False,
    mamba_chunk_size=256,
    rescale_prenorm_residual=True,
    **kwargs,
):
    self.vocab_size = vocab_size
    self.tie_word_embeddings = tie_word_embeddings
    self.hidden_size = hidden_size
    self.intermediate_size = intermediate_size
    self.num_hidden_layers = num_hidden_layers
    self.hybrid_override_pattern = hybrid_override_pattern
    self.num_attention_heads = num_attention_heads
    self.attention_head_dim = attention_head_dim
    self.sliding_window = sliding_window
    self.max_position_embeddings = max_position_embeddings
    self.attention_dropout = attention_dropout
    self.hidden_dropout = hidden_dropout

    # Validate hybrid_override_pattern
    # M: Mamba2, *: Attention, -: MLP
    assert len(self.hybrid_override_pattern) == self.num_hidden_layers, (
        "hybrid_override_pattern must have same length as "
        "num_hidden_layers")
    assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), (
        "hybrid_override_pattern must only contain characters "
        "'M', '*', or '-'")

    # for backward compatibility
    if num_key_value_heads is None:
        num_key_value_heads = num_attention_heads

    self.num_key_value_heads = num_key_value_heads
    self.mlp_hidden_act = mlp_hidden_act
    self.attention_bias = attention_bias
    self.mlp_bias = mlp_bias
    self.use_bias = use_bias
    self.initializer_range = initializer_range
    self.layer_norm_epsilon = layer_norm_epsilon
    self.residual_in_fp32 = residual_in_fp32

    self.use_cache = use_cache
    self.num_logits_to_keep = num_logits_to_keep

    self.use_mamba_kernels = use_mamba_kernels
    self.n_groups = mamba_n_groups
    self.mamba_head_dim = mamba_head_dim
    self.ssm_state_size = ssm_state_size
    self.mamba_num_heads = mamba_num_heads
    self.conv_kernel = mamba_d_conv
    self.expand = mamba_expand
    self.mamba_hidden_act = mamba_hidden_act
    self.time_step_min = mamba_dt_min
    self.time_step_max = mamba_dt_max
    self.time_step_limit = mamba_dt_limit
    self.time_step_floor = mamba_dt_init_floor
    self.use_conv_bias = mamba_conv_bias
    self.mamba_proj_bias = mamba_proj_bias
    self.chunk_size = mamba_chunk_size
    self.rescale_prenorm_residual = rescale_prenorm_residual

    super().__init__(
        pad_token_id=pad_token_id,
        bos_token_id=bos_token_id,
        eos_token_id=eos_token_id,
        tie_word_embeddings=tie_word_embeddings,
        **kwargs,
    )