vllm.transformers_utils.configs.jais
JAIS configuration
JAISConfig
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a
[JAISModel
]. It is used to instantiate a JAIS model according to the
specified arguments, defining the model architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used
to control the model outputs. Read the documentation from
[PretrainedConfig
] for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab_size
|
`int`, *optional*, defaults to 50257
|
Vocabulary size of the JAIS model. Defines the number of different
tokens that can be represented by the
|
50257
|
n_positions
|
`int`, *optional*, defaults to 1024
|
The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). |
1024
|
n_embd
|
`int`, *optional*, defaults to 768
|
Dimensionality of the embeddings and hidden states. |
768
|
n_layer
|
`int`, *optional*, defaults to 12
|
Number of hidden layers in the Transformer encoder. |
12
|
n_head
|
`int`, *optional*, defaults to 12
|
Number of attention heads for each attention layer in the Transformer encoder. |
12
|
n_inner
|
`int`, *optional*, defaults to None
|
Dimensionality of the inner feed-forward layers. |
None
|
activation_function
|
`str`, *optional*, defaults to `"gelu"`
|
Activation function, to be selected in the list
|
'gelu_new'
|
resid_pdrop
|
`float`, *optional*, defaults to 0.1
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
0.1
|
embd_pdrop
|
`float`, *optional*, defaults to 0.1
|
The dropout ratio for the embeddings. |
0.1
|
attn_pdrop
|
`float`, *optional*, defaults to 0.1
|
The dropout ratio for the attention. |
0.1
|
layer_norm_epsilon
|
`float`, *optional*, defaults to 1e-5
|
The epsilon to use in the layer normalization layers. |
1e-05
|
initializer_range
|
`float`, *optional*, defaults to 0.02
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
0.02
|
scale_attn_weights
|
`bool`, *optional*, defaults to `True`
|
Scale attention weights by dividing by sqrt(hidden_size).. |
True
|
use_cache
|
`bool`, *optional*, defaults to `True`
|
Whether or not the model should return the last key/values attentions (not used by all models). |
True
|
reorder_and_upcast_attn
|
`bool`, *optional*, defaults to `False`
|
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-product/softmax to float() when training with mixed precision. |
False
|
position_embedding_type
|
`str`, *optional*, defaults to `"learned"`
|
Positional embedding can be either |
'learned'
|
mup_width_scale
|
`float`, *optional*, defaults to 1.0
|
muP parameter to scale learning rate and initializers. Calculated
as ( |
1.0
|
mup_embeddings_scale
|
`float`, *optional*, defaults to 1.0
|
muP parameter to scale token and position embeddings. |
1.0
|
mup_output_alpha
|
`float`, *optional*, defaults to 1.0
|
muP parameter to scale output logits
( |
1.0
|
mup_scale_qk_dot_by_d
|
`bool`, *optional*, defaults to `False`
|
Scale attention weights by dividing by hidden_size instead of
sqrt(hidden_size). Need to set scale_attn_weights to |
False
|
alibi_scaling
|
`dict`, *optional*
|
Dictionary containing the scaling configuration for ALiBi
embeddings. Currently only supports linear
scaling strategy. Can specify either the scaling |
None
|
architectures
|
`list`, *optional*, defaults to ['JAISLMHeadModel']
|
architecture names for Jais. |
None
|
Example:
>>> from transformers import JAISConfig, JAISModel
>>> # Initializing a JAIS configuration
>>> configuration = JAISConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = JAISModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in vllm/transformers_utils/configs/jais.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
attribute_map
class-attribute
instance-attribute
¶
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
keys_to_ignore_at_inference
class-attribute
instance-attribute
¶
scale_attn_by_inverse_layer_idx
instance-attribute
¶
__init__
¶
__init__(
vocab_size=50257,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-05,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
position_embedding_type="learned",
mup_width_scale=1.0,
mup_embeddings_scale=1.0,
mup_output_alpha=1.0,
mup_scale_qk_dot_by_d=False,
alibi_scaling=None,
architectures=None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/jais.py
_alibi_scaling_validation
¶
Validate the alibi_scaling
configuration.