class MiniMaxVL01Config(PretrainedConfig):
model_type = "minimax_vl_01"
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32000,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
image_grid_pinpoints=None,
tie_word_embeddings=False,
image_seq_length=576,
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.image_seq_length = image_seq_length
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError("vision_feature_select_strategy should " +
"be one of 'default', 'full'." +
f"Got: {vision_feature_select_strategy}")
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
image_grid_pinpoints = (
image_grid_pinpoints if image_grid_pinpoints is not None else
[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]])
self.image_grid_pinpoints = image_grid_pinpoints
if isinstance(vision_config, dict):
if "model_type" not in vision_config:
vision_config["model_type"] = "clip_vision_model"
vision_config = CONFIG_MAPPING[vision_config["model_type"]](
**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vision_config = vision_config
if text_config is not None:
text_config = MiniMaxText01Config(**text_config)
else:
text_config = MiniMaxText01Config()
self.text_config = text_config
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)