vllm.transformers_utils.configs.cohere2
Cohere2Config
¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [CohereModel
]. It is used to instantiate an Cohere
model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig
] for more information. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CohereForAI/c4ai-command-r-v01 model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab_size
|
`int`, *optional*, defaults to 256000
|
Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
|
256000
|
hidden_size
|
`int`, *optional*, defaults to 8192
|
Dimension of the hidden representations. |
8192
|
intermediate_size
|
`int`, *optional*, defaults to 22528
|
Dimension of the MLP representations. |
22528
|
logit_scale
|
`float`, *optional*, defaults to 0.0625
|
The scaling factor for the output logits. |
0.0625
|
num_hidden_layers
|
`int`, *optional*, defaults to 40
|
Number of hidden layers in the Transformer decoder. |
40
|
num_attention_heads
|
`int`, *optional*, defaults to 64
|
Number of attention heads for each attention layer in the Transformer decoder. |
64
|
num_key_value_heads
|
`int`, *optional*
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
None
|
hidden_act
|
`str` or `function`, *optional*, defaults to `"silu"`
|
The non-linear activation function (function or string) in the decoder. |
'silu'
|
max_position_embeddings
|
`int`, *optional*, defaults to 8192
|
The maximum sequence length that this model might ever be used with. |
8192
|
initializer_range
|
`float`, *optional*, defaults to 0.02
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
0.02
|
layer_norm_eps
|
`float`, *optional*, defaults to 1e-05
|
The epsilon used by the layer normalization. |
1e-05
|
use_cache
|
`bool`, *optional*, defaults to `True`
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if |
True
|
pad_token_id
|
`int`, *optional*, defaults to 0
|
Padding token id. |
0
|
bos_token_id
|
`int`, *optional*, defaults to 5
|
Beginning of stream token id. |
5
|
eos_token_id
|
`int`, *optional*, defaults to 255001
|
End of stream token id. |
255001
|
tie_word_embeddings
|
`bool`, *optional*, defaults to `True`
|
Whether to tie weight embeddings |
True
|
rope_theta
|
`float`, *optional*, defaults to 10000.0
|
The base period of the RoPE embeddings. |
10000.0
|
rope_scaling
|
`dict`, *optional*
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer |
None
|
attention_bias
|
`bool`, defaults to `False`, *optional*, defaults to `False`
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
False
|
attention_dropout
|
`float`, *optional*, defaults to 0.0
|
The dropout ratio for the attention probabilities. |
0.0
|
sliding_window
|
`int`, *optional*, defaults to 4096
|
Size of the sliding window attention context. |
4096
|
sliding_window_pattern
|
`int`, *optional*, defaults to 4
|
Pattern for the sliding window attention. |
4
|
cache_implementation
|
`str`, *optional*, defaults to `"hybrid"`
|
the cache type to be used with |
'hybrid'
|
>>> from transformers import Cohere2Model, Cohere2Config
>>> # Initializing a Cohere Nextmodel configuration
>>> configuration = Cohere2Config()
>>> # Initializing a model from the Cohere2 configuration
>>> model = Cohere2Model(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
Source code in vllm/transformers_utils/configs/cohere2.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
keys_to_ignore_at_inference
class-attribute
instance-attribute
¶
__init__
¶
__init__(
vocab_size=256000,
hidden_size=8192,
intermediate_size=22528,
logit_scale=0.0625,
num_hidden_layers=40,
num_attention_heads=64,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=8192,
initializer_range=0.02,
layer_norm_eps=1e-05,
use_cache=True,
pad_token_id=0,
bos_token_id=5,
eos_token_id=255001,
tie_word_embeddings=True,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
sliding_window=4096,
sliding_window_pattern=4,
cache_implementation="hybrid",
**kwargs,
)