Skip to content

vllm.transformers_utils.configs.mpt

A HuggingFace-style model configuration.

attn_config_defaults module-attribute

attn_config_defaults: dict = {
    "attn_type": "multihead_attention",
    "attn_pdrop": 0.0,
    "attn_impl": "triton",
    "qk_ln": False,
    "clip_qkv": None,
    "softmax_scale": None,
    "prefix_lm": False,
    "attn_uses_sequence_id": False,
    "alibi": False,
    "alibi_bias_max": 8,
}

ffn_config_defaults module-attribute

ffn_config_defaults: dict = {'ffn_type': 'mptmlp'}

init_config_defaults module-attribute

init_config_defaults: dict = {
    "name": "kaiming_normal_",
    "fan_mode": "fan_in",
    "init_nonlinearity": "relu",
    "init_div_is_residual": True,
    "emb_init_std": None,
    "emb_init_uniform_lim": None,
    "init_std": None,
    "init_gain": 0.0,
}

MPTConfig

Bases: PretrainedConfig

Source code in vllm/transformers_utils/configs/mpt.py
class MPTConfig(PretrainedConfig):
    model_type = 'mpt'
    attribute_map = {
        'num_attention_heads': 'n_heads',
        'hidden_size': 'd_model',
        'num_hidden_layers': 'n_layers',
    }

    # pylint: disable=dangerous-default-value
    def __init__(self,
                 d_model: int = 2048,
                 n_heads: int = 16,
                 n_layers: int = 24,
                 expansion_ratio: int = 4,
                 max_seq_len: int = 2048,
                 vocab_size: int = 50368,
                 resid_pdrop: float = 0.0,
                 emb_pdrop: float = 0.0,
                 learned_pos_emb: bool = True,
                 attn_config: dict = attn_config_defaults,
                 ffn_config: dict = ffn_config_defaults,
                 init_device: str = 'cpu',
                 logit_scale: Optional[Union[float, str]] = None,
                 no_bias: bool = False,
                 embedding_fraction: float = 1.0,
                 norm_type: str = 'low_precision_layernorm',
                 use_cache: bool = False,
                 init_config: dict = init_config_defaults,
                 fc_type: str = 'torch',
                 verbose: Optional[int] = None,
                 **kwargs: Any):
        self.d_model = d_model
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.expansion_ratio = expansion_ratio
        self.max_seq_len = max_seq_len
        self.vocab_size = vocab_size
        self.resid_pdrop = resid_pdrop
        self.emb_pdrop = emb_pdrop
        self.learned_pos_emb = learned_pos_emb
        self.attn_config = attn_config
        self.ffn_config = ffn_config
        self.init_device = init_device
        self.logit_scale = logit_scale
        self.no_bias = no_bias
        self.embedding_fraction = embedding_fraction
        self.norm_type = norm_type
        self.use_cache = use_cache
        self.init_config = init_config
        self.fc_type = fc_type
        if verbose is not None:
            warnings.warn(DeprecationWarning(
                'verbose argument for MPTConfig is now ignored and '
                'will be removed. Use python_log_level instead.'),
                          stacklevel=2)
        if 'name' in kwargs:
            del kwargs['name']
        if 'loss_fn' in kwargs:
            del kwargs['loss_fn']
        if self.attn_config.get('alibi', False):
            self.learned_pos_emb = False
            warnings.warn(
                f'alibi is turned on, setting `learned_pos_emb` '
                f'to {self.learned_pos_emb}`',
                stacklevel=2)
        super().__init__(**kwargs)
        self._validate_config()

    def _set_config_defaults(
            self, config: dict[str, Any],
            config_defaults: dict[str, Any]) -> dict[str, Any]:
        for (k, v) in config_defaults.items():
            if k not in config:
                config[k] = v
        return config

    def _validate_config(self) -> None:
        self.attn_config = self._set_config_defaults(self.attn_config,
                                                     attn_config_defaults)
        self.ffn_config = self._set_config_defaults(self.ffn_config,
                                                    ffn_config_defaults)
        self.init_config = self._set_config_defaults(self.init_config,
                                                     init_config_defaults)
        if self.d_model % self.n_heads != 0:
            raise ValueError('d_model must be divisible by n_heads')
        if any(
                prob < 0 or prob > 1 for prob in
            [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop
             ]):
            raise ValueError(
                "self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are "
                "probabilities and must be between 0 and 1")
        if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
            raise ValueError(
                f"Unknown attn_impl={self.attn_config['attn_impl']}")
        if self.attn_config['prefix_lm'] and self.attn_config[
                'attn_impl'] not in ['torch', 'triton']:
            raise NotImplementedError(
                'prefix_lm only implemented with torch and triton attention.')
        if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in [
                'torch', 'triton'
        ]:
            raise NotImplementedError(
                'alibi only implemented with torch and triton attention.')
        if self.attn_config['attn_uses_sequence_id'] and self.attn_config[
                'attn_impl'] not in ['torch', 'triton']:
            raise NotImplementedError(
                'attn_uses_sequence_id only implemented with torch '
                'and triton attention.')
        if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
            raise ValueError(
                'model.embedding_fraction must be between 0 (exclusive) '
                'and 1 (inclusive)!')
        if isinstance(self.logit_scale,
                      str) and self.logit_scale != 'inv_sqrt_d_model':
            raise ValueError(
                f"self.logit_scale={self.logit_scale!r} is not recognized as "
                "an option; use numeric value or 'inv_sqrt_d_model'.")
        if self.init_config.get('name', None) is None:
            raise ValueError(
                f"self.init_config={self.init_config!r} 'name' needs to be set."
            )
        if not self.learned_pos_emb and (not self.attn_config['alibi']):
            warnings.warn(
                'Positional information not being provided to the model.',
                stacklevel=2)
        if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
            try:
                # pylint: disable=import-outside-toplevel
                import transformer_engine.pytorch as te
                del te
            except Exception as exc:
                raise ImportError(
                    'TransformerEngine import fail. `fc_type: te` requires '
                    'TransformerEngine be installed. '
                    'The required version of transformer_engine also requires '
                    'FlashAttention v1.0.6 is installed:\n'
                    'pip install flash-attn==1.0.6 --no-build-isolation \n'
                    'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156'
                ) from exc
        if self.ffn_config['ffn_type'] == 'mptmlp':
            self.ffn_config['fc_type'] = self.fc_type
        elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
            self.ffn_config['bias'] = not self.no_bias

attn_config instance-attribute

attn_config = attn_config

attribute_map class-attribute instance-attribute

attribute_map = {
    "num_attention_heads": "n_heads",
    "hidden_size": "d_model",
    "num_hidden_layers": "n_layers",
}

d_model instance-attribute

d_model = d_model

emb_pdrop instance-attribute

emb_pdrop = emb_pdrop

embedding_fraction instance-attribute

embedding_fraction = embedding_fraction

expansion_ratio instance-attribute

expansion_ratio = expansion_ratio

fc_type instance-attribute

fc_type = fc_type

ffn_config instance-attribute

ffn_config = ffn_config

init_config instance-attribute

init_config = init_config

init_device instance-attribute

init_device = init_device

learned_pos_emb instance-attribute

learned_pos_emb = learned_pos_emb

logit_scale instance-attribute

logit_scale = logit_scale

max_seq_len instance-attribute

max_seq_len = max_seq_len

model_type class-attribute instance-attribute

model_type = 'mpt'

n_heads instance-attribute

n_heads = n_heads

n_layers instance-attribute

n_layers = n_layers

no_bias instance-attribute

no_bias = no_bias

norm_type instance-attribute

norm_type = norm_type

resid_pdrop instance-attribute

resid_pdrop = resid_pdrop

use_cache instance-attribute

use_cache = use_cache

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    d_model: int = 2048,
    n_heads: int = 16,
    n_layers: int = 24,
    expansion_ratio: int = 4,
    max_seq_len: int = 2048,
    vocab_size: int = 50368,
    resid_pdrop: float = 0.0,
    emb_pdrop: float = 0.0,
    learned_pos_emb: bool = True,
    attn_config: dict = attn_config_defaults,
    ffn_config: dict = ffn_config_defaults,
    init_device: str = "cpu",
    logit_scale: Optional[Union[float, str]] = None,
    no_bias: bool = False,
    embedding_fraction: float = 1.0,
    norm_type: str = "low_precision_layernorm",
    use_cache: bool = False,
    init_config: dict = init_config_defaults,
    fc_type: str = "torch",
    verbose: Optional[int] = None,
    **kwargs: Any,
)
Source code in vllm/transformers_utils/configs/mpt.py
def __init__(self,
             d_model: int = 2048,
             n_heads: int = 16,
             n_layers: int = 24,
             expansion_ratio: int = 4,
             max_seq_len: int = 2048,
             vocab_size: int = 50368,
             resid_pdrop: float = 0.0,
             emb_pdrop: float = 0.0,
             learned_pos_emb: bool = True,
             attn_config: dict = attn_config_defaults,
             ffn_config: dict = ffn_config_defaults,
             init_device: str = 'cpu',
             logit_scale: Optional[Union[float, str]] = None,
             no_bias: bool = False,
             embedding_fraction: float = 1.0,
             norm_type: str = 'low_precision_layernorm',
             use_cache: bool = False,
             init_config: dict = init_config_defaults,
             fc_type: str = 'torch',
             verbose: Optional[int] = None,
             **kwargs: Any):
    self.d_model = d_model
    self.n_heads = n_heads
    self.n_layers = n_layers
    self.expansion_ratio = expansion_ratio
    self.max_seq_len = max_seq_len
    self.vocab_size = vocab_size
    self.resid_pdrop = resid_pdrop
    self.emb_pdrop = emb_pdrop
    self.learned_pos_emb = learned_pos_emb
    self.attn_config = attn_config
    self.ffn_config = ffn_config
    self.init_device = init_device
    self.logit_scale = logit_scale
    self.no_bias = no_bias
    self.embedding_fraction = embedding_fraction
    self.norm_type = norm_type
    self.use_cache = use_cache
    self.init_config = init_config
    self.fc_type = fc_type
    if verbose is not None:
        warnings.warn(DeprecationWarning(
            'verbose argument for MPTConfig is now ignored and '
            'will be removed. Use python_log_level instead.'),
                      stacklevel=2)
    if 'name' in kwargs:
        del kwargs['name']
    if 'loss_fn' in kwargs:
        del kwargs['loss_fn']
    if self.attn_config.get('alibi', False):
        self.learned_pos_emb = False
        warnings.warn(
            f'alibi is turned on, setting `learned_pos_emb` '
            f'to {self.learned_pos_emb}`',
            stacklevel=2)
    super().__init__(**kwargs)
    self._validate_config()

_set_config_defaults

_set_config_defaults(
    config: dict[str, Any], config_defaults: dict[str, Any]
) -> dict[str, Any]
Source code in vllm/transformers_utils/configs/mpt.py
def _set_config_defaults(
        self, config: dict[str, Any],
        config_defaults: dict[str, Any]) -> dict[str, Any]:
    for (k, v) in config_defaults.items():
        if k not in config:
            config[k] = v
    return config

_validate_config

_validate_config() -> None
Source code in vllm/transformers_utils/configs/mpt.py
def _validate_config(self) -> None:
    self.attn_config = self._set_config_defaults(self.attn_config,
                                                 attn_config_defaults)
    self.ffn_config = self._set_config_defaults(self.ffn_config,
                                                ffn_config_defaults)
    self.init_config = self._set_config_defaults(self.init_config,
                                                 init_config_defaults)
    if self.d_model % self.n_heads != 0:
        raise ValueError('d_model must be divisible by n_heads')
    if any(
            prob < 0 or prob > 1 for prob in
        [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop
         ]):
        raise ValueError(
            "self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are "
            "probabilities and must be between 0 and 1")
    if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
        raise ValueError(
            f"Unknown attn_impl={self.attn_config['attn_impl']}")
    if self.attn_config['prefix_lm'] and self.attn_config[
            'attn_impl'] not in ['torch', 'triton']:
        raise NotImplementedError(
            'prefix_lm only implemented with torch and triton attention.')
    if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in [
            'torch', 'triton'
    ]:
        raise NotImplementedError(
            'alibi only implemented with torch and triton attention.')
    if self.attn_config['attn_uses_sequence_id'] and self.attn_config[
            'attn_impl'] not in ['torch', 'triton']:
        raise NotImplementedError(
            'attn_uses_sequence_id only implemented with torch '
            'and triton attention.')
    if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
        raise ValueError(
            'model.embedding_fraction must be between 0 (exclusive) '
            'and 1 (inclusive)!')
    if isinstance(self.logit_scale,
                  str) and self.logit_scale != 'inv_sqrt_d_model':
        raise ValueError(
            f"self.logit_scale={self.logit_scale!r} is not recognized as "
            "an option; use numeric value or 'inv_sqrt_d_model'.")
    if self.init_config.get('name', None) is None:
        raise ValueError(
            f"self.init_config={self.init_config!r} 'name' needs to be set."
        )
    if not self.learned_pos_emb and (not self.attn_config['alibi']):
        warnings.warn(
            'Positional information not being provided to the model.',
            stacklevel=2)
    if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
        try:
            # pylint: disable=import-outside-toplevel
            import transformer_engine.pytorch as te
            del te
        except Exception as exc:
            raise ImportError(
                'TransformerEngine import fail. `fc_type: te` requires '
                'TransformerEngine be installed. '
                'The required version of transformer_engine also requires '
                'FlashAttention v1.0.6 is installed:\n'
                'pip install flash-attn==1.0.6 --no-build-isolation \n'
                'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156'
            ) from exc
    if self.ffn_config['ffn_type'] == 'mptmlp':
        self.ffn_config['fc_type'] = self.fc_type
    elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
        self.ffn_config['bias'] = not self.no_bias