Skip to content

vllm.transformers_utils.configs.arctic

Arctic model configuration

ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP module-attribute

ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json"
}

logger module-attribute

logger = get_logger(__name__)

ArcticConfig

Bases: PretrainedConfig

This is the configuration class to store the configuration of a [ArcticModel]. It is used to instantiate an Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config..

Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.

Parameters:

Name Type Description Default
vocab_size `int`, *optional*, defaults to 32000

Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling [ArcticModel]

32000
hidden_size `int`, *optional*, defaults to 4096

Dimension of the hidden representations.

4096
intermediate_size `int`, *optional*, defaults to 14336

Dimension of the MLP representations.

14336
num_hidden_layers `int`, *optional*, defaults to 32

Number of hidden layers in the Transformer encoder.

32
num_attention_heads `int`, *optional*, defaults to 32

Number of attention heads for each attention layer in the Transformer encoder.

32
num_key_value_heads `int`, *optional*, defaults to 8

This is the number of key_value heads that should be used to implement Grouped Query Attention. If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to8`.

None
hidden_act `str` or `function`, *optional*, defaults to `"silu"`

The non-linear activation function (function or string) in the decoder.

'silu'
max_position_embeddings `int`, *optional*, defaults to `4096*32`

The maximum sequence length that this model might ever be used with. Arctic's sliding window attention allows sequence of up to 4096*32 tokens.

4096
initializer_range `float`, *optional*, defaults to 0.02

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

0.02
rms_norm_eps `float`, *optional*, defaults to 1e-05

The epsilon used by the rms normalization layers.

1e-05
use_cache `bool`, *optional*, defaults to `True`

Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True.

True
pad_token_id `int`, *optional*

The id of the padding token.

None
bos_token_id `int`, *optional*, defaults to 1

The id of the "beginning-of-sequence" token.

1
eos_token_id `int`, *optional*, defaults to 2

The id of the "end-of-sequence" token.

2
tie_word_embeddings `bool`, *optional*, defaults to `False`

Whether the model's input and output word embeddings should be tied.

False
rope_theta `float`, *optional*, defaults to 1000000.0

The base period of the RoPE embeddings.

1000000.0
sliding_window `int`, *optional*

Sliding window attention window size. If not specified, will default to 4096.

None
attention_dropout `float`, *optional*, defaults to 0.0

The dropout ratio for the attention probabilities.

0.0
num_experts_per_tok `int`, *optional*, defaults to 2

The number of experts to root per-token, can be also interpreted as the top-p routing parameter

1
num_local_experts `int`, *optional*, defaults to 8

Number of experts per Sparse MLP layer.

8
router_aux_loss_coef `float`, *optional*, defaults to 0.001

The aux loss factor for the total loss.

0.001
>>> from transformers import ArcticModel, ArcticConfig

>>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to.
>>> configuration = ArcticConfig()

>>> # Initializing a model from the Arctic 7B style configuration
>>> model = ArcticModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
Source code in vllm/transformers_utils/configs/arctic.py
class ArcticConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an
    Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config..


    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ArcticModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. Arctic's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If not specified, will default to `4096`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        num_experts_per_tok (`int`, *optional*, defaults to 2):
            The number of experts to root per-token, can be also interpreted as the `top-p` routing
            parameter
        num_local_experts (`int`, *optional*, defaults to 8):
            Number of experts per Sparse MLP layer.
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
            The aux loss factor for the total loss.

    ```python
    >>> from transformers import ArcticModel, ArcticConfig

    >>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to.
    >>> configuration = ArcticConfig()

    >>> # Initializing a model from the Arctic 7B style configuration
    >>> model = ArcticModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "arctic"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=14336,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="silu",
        max_position_embeddings=4096,
        initializer_range=0.02,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        rope_theta=1e6,
        sliding_window=None,
        attention_dropout=0.0,
        num_experts_per_tok=1,
        num_local_experts=8,
        router_aux_loss_coef=0.001,
        moe_layer_frequency=2,
        parallel_attn_mlp_res=False,
        moe_train_capacity_factor=1,
        moe_eval_capacity_factor=1,
        enable_expert_tensor_parallelism=False,
        moe_min_capacity=0,
        moe_token_dropping=True,
        quantization=None,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.sliding_window = sliding_window

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout

        self.num_experts_per_tok = num_experts_per_tok
        self.num_local_experts = num_local_experts
        self.router_aux_loss_coef = router_aux_loss_coef
        self.moe_layer_frequency = moe_layer_frequency
        self.moe_train_capacity_factor = moe_train_capacity_factor
        self.moe_eval_capacity_factor = moe_eval_capacity_factor
        self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
        self.moe_min_capacity = moe_min_capacity
        self.moe_token_dropping = moe_token_dropping
        self.parallel_attn_mlp_res = parallel_attn_mlp_res
        if isinstance(quantization, dict):
            self.quantization = ArcticQuantizationConfig(**quantization)
        else:
            self.quantization = quantization

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    @classmethod
    def from_dict(cls, config_dict: dict[str, Any], **kwargs) -> "ArcticConfig":
        result = super().from_dict(config_dict, **kwargs)
        config = result[0] if isinstance(result, tuple) else result
        if isinstance(config.quantization, dict):
            config.quantization = ArcticQuantizationConfig(**config.quantization)
        return result

    def to_dict(self) -> dict[str, Any]:
        ret = super().to_dict()
        if isinstance(ret["quantization"], ArcticQuantizationConfig):
            ret["quantization"] = asdict(ret["quantization"])
        return ret

attention_dropout instance-attribute

attention_dropout = attention_dropout

enable_expert_tensor_parallelism instance-attribute

enable_expert_tensor_parallelism = (
    enable_expert_tensor_parallelism
)

hidden_act instance-attribute

hidden_act = hidden_act

hidden_size instance-attribute

hidden_size = hidden_size

initializer_range instance-attribute

initializer_range = initializer_range

intermediate_size instance-attribute

intermediate_size = intermediate_size

keys_to_ignore_at_inference class-attribute instance-attribute

keys_to_ignore_at_inference = ['past_key_values']

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

model_type class-attribute instance-attribute

model_type = 'arctic'

moe_eval_capacity_factor instance-attribute

moe_eval_capacity_factor = moe_eval_capacity_factor

moe_layer_frequency instance-attribute

moe_layer_frequency = moe_layer_frequency

moe_min_capacity instance-attribute

moe_min_capacity = moe_min_capacity

moe_token_dropping instance-attribute

moe_token_dropping = moe_token_dropping

moe_train_capacity_factor instance-attribute

moe_train_capacity_factor = moe_train_capacity_factor

num_attention_heads instance-attribute

num_attention_heads = num_attention_heads

num_experts_per_tok instance-attribute

num_experts_per_tok = num_experts_per_tok

num_hidden_layers instance-attribute

num_hidden_layers = num_hidden_layers

num_key_value_heads instance-attribute

num_key_value_heads = num_key_value_heads

num_local_experts instance-attribute

num_local_experts = num_local_experts

parallel_attn_mlp_res instance-attribute

parallel_attn_mlp_res = parallel_attn_mlp_res

quantization instance-attribute

quantization = ArcticQuantizationConfig(**quantization)

rms_norm_eps instance-attribute

rms_norm_eps = rms_norm_eps

rope_theta instance-attribute

rope_theta = rope_theta

router_aux_loss_coef instance-attribute

router_aux_loss_coef = router_aux_loss_coef

sliding_window instance-attribute

sliding_window = sliding_window

use_cache instance-attribute

use_cache = use_cache

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    vocab_size=32000,
    hidden_size=4096,
    intermediate_size=14336,
    num_hidden_layers=32,
    num_attention_heads=32,
    num_key_value_heads=None,
    hidden_act="silu",
    max_position_embeddings=4096,
    initializer_range=0.02,
    rms_norm_eps=1e-05,
    use_cache=True,
    pad_token_id=None,
    bos_token_id=1,
    eos_token_id=2,
    tie_word_embeddings=False,
    rope_theta=1000000.0,
    sliding_window=None,
    attention_dropout=0.0,
    num_experts_per_tok=1,
    num_local_experts=8,
    router_aux_loss_coef=0.001,
    moe_layer_frequency=2,
    parallel_attn_mlp_res=False,
    moe_train_capacity_factor=1,
    moe_eval_capacity_factor=1,
    enable_expert_tensor_parallelism=False,
    moe_min_capacity=0,
    moe_token_dropping=True,
    quantization=None,
    **kwargs,
)
Source code in vllm/transformers_utils/configs/arctic.py
def __init__(
    self,
    vocab_size=32000,
    hidden_size=4096,
    intermediate_size=14336,
    num_hidden_layers=32,
    num_attention_heads=32,
    num_key_value_heads=None,
    hidden_act="silu",
    max_position_embeddings=4096,
    initializer_range=0.02,
    rms_norm_eps=1e-5,
    use_cache=True,
    pad_token_id=None,
    bos_token_id=1,
    eos_token_id=2,
    tie_word_embeddings=False,
    rope_theta=1e6,
    sliding_window=None,
    attention_dropout=0.0,
    num_experts_per_tok=1,
    num_local_experts=8,
    router_aux_loss_coef=0.001,
    moe_layer_frequency=2,
    parallel_attn_mlp_res=False,
    moe_train_capacity_factor=1,
    moe_eval_capacity_factor=1,
    enable_expert_tensor_parallelism=False,
    moe_min_capacity=0,
    moe_token_dropping=True,
    quantization=None,
    **kwargs,
):
    self.vocab_size = vocab_size
    self.max_position_embeddings = max_position_embeddings
    self.hidden_size = hidden_size
    self.intermediate_size = intermediate_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.sliding_window = sliding_window

    # for backward compatibility
    if num_key_value_heads is None:
        num_key_value_heads = num_attention_heads

    self.num_key_value_heads = num_key_value_heads
    self.hidden_act = hidden_act
    self.initializer_range = initializer_range
    self.rms_norm_eps = rms_norm_eps
    self.use_cache = use_cache
    self.rope_theta = rope_theta
    self.attention_dropout = attention_dropout

    self.num_experts_per_tok = num_experts_per_tok
    self.num_local_experts = num_local_experts
    self.router_aux_loss_coef = router_aux_loss_coef
    self.moe_layer_frequency = moe_layer_frequency
    self.moe_train_capacity_factor = moe_train_capacity_factor
    self.moe_eval_capacity_factor = moe_eval_capacity_factor
    self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
    self.moe_min_capacity = moe_min_capacity
    self.moe_token_dropping = moe_token_dropping
    self.parallel_attn_mlp_res = parallel_attn_mlp_res
    if isinstance(quantization, dict):
        self.quantization = ArcticQuantizationConfig(**quantization)
    else:
        self.quantization = quantization

    super().__init__(
        pad_token_id=pad_token_id,
        bos_token_id=bos_token_id,
        eos_token_id=eos_token_id,
        tie_word_embeddings=tie_word_embeddings,
        **kwargs,
    )

from_dict classmethod

from_dict(
    config_dict: dict[str, Any], **kwargs
) -> ArcticConfig
Source code in vllm/transformers_utils/configs/arctic.py
@classmethod
def from_dict(cls, config_dict: dict[str, Any], **kwargs) -> "ArcticConfig":
    result = super().from_dict(config_dict, **kwargs)
    config = result[0] if isinstance(result, tuple) else result
    if isinstance(config.quantization, dict):
        config.quantization = ArcticQuantizationConfig(**config.quantization)
    return result

to_dict

to_dict() -> dict[str, Any]
Source code in vllm/transformers_utils/configs/arctic.py
def to_dict(self) -> dict[str, Any]:
    ret = super().to_dict()
    if isinstance(ret["quantization"], ArcticQuantizationConfig):
        ret["quantization"] = asdict(ret["quantization"])
    return ret

ArcticLoRAConfig dataclass

Source code in vllm/transformers_utils/configs/arctic.py
@dataclass
class ArcticLoRAConfig:
    lora_r: int = 64
    lora_alpha: float = 16
    shard_base_weights: bool = False

lora_alpha class-attribute instance-attribute

lora_alpha: float = 16

lora_r class-attribute instance-attribute

lora_r: int = 64

shard_base_weights class-attribute instance-attribute

shard_base_weights: bool = False

__init__

__init__(
    lora_r: int = 64,
    lora_alpha: float = 16,
    shard_base_weights: bool = False,
) -> None

ArcticQuantizationConfig dataclass

Source code in vllm/transformers_utils/configs/arctic.py
@dataclass
class ArcticQuantizationConfig:
    q_bits: int = 8
    rounding: str = "nearest"
    mantissa_bits: int = 3
    group_size: int = 128

group_size class-attribute instance-attribute

group_size: int = 128

mantissa_bits class-attribute instance-attribute

mantissa_bits: int = 3

q_bits class-attribute instance-attribute

q_bits: int = 8

rounding class-attribute instance-attribute

rounding: str = 'nearest'

__init__

__init__(
    q_bits: int = 8,
    rounding: str = "nearest",
    mantissa_bits: int = 3,
    group_size: int = 128,
) -> None