Bases: LoRANotSupportedWorkerBase
, Worker
A worker class that executes (a partition of) the model on a GPU.
Each worker is associated with a single XPU device. The worker is
responsible for maintaining the KV cache and executing the model on the
XPU. In case of distributed inference, each worker is assigned a partition
of the model.
Source code in vllm/worker/xpu_worker.py
| class XPUWorker(LoRANotSupportedWorkerBase, Worker):
"""A worker class that executes (a partition of) the model on a GPU.
Each worker is associated with a single XPU device. The worker is
responsible for maintaining the KV cache and executing the model on the
XPU. In case of distributed inference, each worker is assigned a partition
of the model.
"""
def __init__(
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
) -> None:
WorkerBase.__init__(self, vllm_config=vllm_config)
device_config = self.device_config
parallel_config = self.parallel_config
assert device_config.device_type == "xpu"
assert current_platform.is_xpu()
self.parallel_config.rank = rank
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.is_driver_worker = is_driver_worker
if parallel_config and is_driver_worker:
assert rank % parallel_config.tensor_parallel_size == 0, \
"Driver worker should be rank 0 of tensor parallel group."
self.model_runner = XPUModelRunner( # type: ignore
vllm_config=vllm_config,
kv_cache_dtype=self.cache_config.cache_dtype,
is_driver_worker=is_driver_worker,
)
# Uninitialized cache engine. Will be initialized by
# initialize_cache.
self.cache_engine: List[CacheEngine]
self.gpu_cache: Optional[List[List[torch.Tensor]]]
def init_device(self) -> None:
if self.device_config.device.type == "xpu" and current_platform.is_xpu(
):
self.device = torch.device(f"xpu:{self.local_rank}")
torch.xpu.set_device(self.device)
torch.xpu.empty_cache()
self.init_gpu_memory = torch.xpu.get_device_properties(
self.local_rank).total_memory
else:
raise RuntimeError(
f"Not support device type: {self.device_config.device}")
# Initialize the distributed environment.
self.init_worker_distributed_environment()
# Initialize the model.
set_random_seed(self.model_config.seed)
# keep this method for `empty_cache` and `synchronize` api
@torch.inference_mode()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Profiles the peak memory usage of the model to determine how many
KV blocks may be allocated without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
Tip:
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
torch.xpu.empty_cache()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.xpu.synchronize()
used_memory = torch.xpu.memory_allocated()
total_gpu_memory = torch.xpu.get_device_properties(
self.local_rank).total_memory
free_gpu_memory = total_gpu_memory - used_memory
# NOTE(woosuk): Here we assume that the other processes using the same
# GPU did not change their memory usage during the profiling.
peak_memory = self.init_gpu_memory - free_gpu_memory
assert peak_memory > 0, (
"Error in memory profiling. "
f"Initial free memory {self.init_gpu_memory}, current free memory"
f" {free_gpu_memory}. This happens when the GPU memory was "
"not properly cleaned up before initializing the vLLM instance.")
cache_block_size = self.get_cache_block_size_bytes()
num_gpu_blocks = int(
(total_gpu_memory * self.cache_config.gpu_memory_utilization -
peak_memory) // cache_block_size)
num_cpu_blocks = int(self.cache_config.swap_space_bytes //
cache_block_size)
num_gpu_blocks = max(num_gpu_blocks, 0)
num_cpu_blocks = max(num_cpu_blocks, 0)
gc.collect()
torch.xpu.empty_cache()
return num_gpu_blocks, num_cpu_blocks
def _warm_up_model(self) -> None:
# IPEX don't support capture graph yet
pass
def init_worker_distributed_environment(self) -> None:
"""Initialize the distributed environment."""
parallel_config = self.parallel_config
rank = self.rank
distributed_init_method = self.distributed_init_method
if torch.distributed.is_initialized():
torch_world_size = torch.distributed.get_world_size()
if torch_world_size != parallel_config.world_size:
raise RuntimeError(
"torch.distributed is already initialized but the torch "
"world size does not match parallel_config.world_size "
f"({torch_world_size} vs. {parallel_config.world_size}).")
elif not distributed_init_method:
raise ValueError(
"distributed_init_method must be set if torch.distributed "
"is not already initialized")
else:
# use sockets as default Level zero IPC exchange backend. By
# default oneccl will use `drmfd` as mechanism which need extra
# dependency (libdrm and drm headers) on your system.
ENV_CCL_ATL_TRANSPORT = os.getenv("CCL_ATL_TRANSPORT", "ofi")
ENV_LOCAL_WORLD_SIZE = os.getenv("LOCAL_WORLD_SIZE",
str(parallel_config.world_size))
os.environ["CCL_ATL_TRANSPORT"] = ENV_CCL_ATL_TRANSPORT
os.environ["LOCAL_WORLD_SIZE"] = ENV_LOCAL_WORLD_SIZE
os.environ["LOCAL_RANK"] = str(self.local_rank)
init_distributed_environment(
world_size=parallel_config.world_size,
rank=rank,
distributed_init_method=distributed_init_method,
local_rank=self.local_rank,
backend="ccl")
ensure_model_parallel_initialized(
parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size)
# global all_reduce needed for overall oneccl warm up
torch.distributed.all_reduce(torch.zeros(1).xpu())
if parallel_config.pipeline_parallel_size > 1:
# Add pp group init to avoid
# p2p communication as the first call
get_pp_group().all_reduce(torch.zeros(1).xpu())
|
cache_engine
instance-attribute
distributed_init_method
instance-attribute
distributed_init_method = distributed_init_method
gpu_cache
instance-attribute
is_driver_worker
instance-attribute
is_driver_worker = is_driver_worker
local_rank
instance-attribute
model_runner
instance-attribute
model_runner = XPUModelRunner(
vllm_config=vllm_config,
kv_cache_dtype=cache_dtype,
is_driver_worker=is_driver_worker,
)
__init__
__init__(
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
) -> None
Source code in vllm/worker/xpu_worker.py
| def __init__(
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
) -> None:
WorkerBase.__init__(self, vllm_config=vllm_config)
device_config = self.device_config
parallel_config = self.parallel_config
assert device_config.device_type == "xpu"
assert current_platform.is_xpu()
self.parallel_config.rank = rank
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.is_driver_worker = is_driver_worker
if parallel_config and is_driver_worker:
assert rank % parallel_config.tensor_parallel_size == 0, \
"Driver worker should be rank 0 of tensor parallel group."
self.model_runner = XPUModelRunner( # type: ignore
vllm_config=vllm_config,
kv_cache_dtype=self.cache_config.cache_dtype,
is_driver_worker=is_driver_worker,
)
# Uninitialized cache engine. Will be initialized by
# initialize_cache.
self.cache_engine: List[CacheEngine]
self.gpu_cache: Optional[List[List[torch.Tensor]]]
|
_warm_up_model
Source code in vllm/worker/xpu_worker.py
| def _warm_up_model(self) -> None:
# IPEX don't support capture graph yet
pass
|
determine_num_available_blocks
Profiles the peak memory usage of the model to determine how many
KV blocks may be allocated without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
Tip
You may limit the usage of GPU memory
by adjusting the gpu_memory_utilization
parameter.
Source code in vllm/worker/xpu_worker.py
| @torch.inference_mode()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Profiles the peak memory usage of the model to determine how many
KV blocks may be allocated without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
Tip:
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
torch.xpu.empty_cache()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.xpu.synchronize()
used_memory = torch.xpu.memory_allocated()
total_gpu_memory = torch.xpu.get_device_properties(
self.local_rank).total_memory
free_gpu_memory = total_gpu_memory - used_memory
# NOTE(woosuk): Here we assume that the other processes using the same
# GPU did not change their memory usage during the profiling.
peak_memory = self.init_gpu_memory - free_gpu_memory
assert peak_memory > 0, (
"Error in memory profiling. "
f"Initial free memory {self.init_gpu_memory}, current free memory"
f" {free_gpu_memory}. This happens when the GPU memory was "
"not properly cleaned up before initializing the vLLM instance.")
cache_block_size = self.get_cache_block_size_bytes()
num_gpu_blocks = int(
(total_gpu_memory * self.cache_config.gpu_memory_utilization -
peak_memory) // cache_block_size)
num_cpu_blocks = int(self.cache_config.swap_space_bytes //
cache_block_size)
num_gpu_blocks = max(num_gpu_blocks, 0)
num_cpu_blocks = max(num_cpu_blocks, 0)
gc.collect()
torch.xpu.empty_cache()
return num_gpu_blocks, num_cpu_blocks
|
init_device
Source code in vllm/worker/xpu_worker.py
| def init_device(self) -> None:
if self.device_config.device.type == "xpu" and current_platform.is_xpu(
):
self.device = torch.device(f"xpu:{self.local_rank}")
torch.xpu.set_device(self.device)
torch.xpu.empty_cache()
self.init_gpu_memory = torch.xpu.get_device_properties(
self.local_rank).total_memory
else:
raise RuntimeError(
f"Not support device type: {self.device_config.device}")
# Initialize the distributed environment.
self.init_worker_distributed_environment()
# Initialize the model.
set_random_seed(self.model_config.seed)
|
init_worker_distributed_environment
init_worker_distributed_environment() -> None
Initialize the distributed environment.
Source code in vllm/worker/xpu_worker.py
| def init_worker_distributed_environment(self) -> None:
"""Initialize the distributed environment."""
parallel_config = self.parallel_config
rank = self.rank
distributed_init_method = self.distributed_init_method
if torch.distributed.is_initialized():
torch_world_size = torch.distributed.get_world_size()
if torch_world_size != parallel_config.world_size:
raise RuntimeError(
"torch.distributed is already initialized but the torch "
"world size does not match parallel_config.world_size "
f"({torch_world_size} vs. {parallel_config.world_size}).")
elif not distributed_init_method:
raise ValueError(
"distributed_init_method must be set if torch.distributed "
"is not already initialized")
else:
# use sockets as default Level zero IPC exchange backend. By
# default oneccl will use `drmfd` as mechanism which need extra
# dependency (libdrm and drm headers) on your system.
ENV_CCL_ATL_TRANSPORT = os.getenv("CCL_ATL_TRANSPORT", "ofi")
ENV_LOCAL_WORLD_SIZE = os.getenv("LOCAL_WORLD_SIZE",
str(parallel_config.world_size))
os.environ["CCL_ATL_TRANSPORT"] = ENV_CCL_ATL_TRANSPORT
os.environ["LOCAL_WORLD_SIZE"] = ENV_LOCAL_WORLD_SIZE
os.environ["LOCAL_RANK"] = str(self.local_rank)
init_distributed_environment(
world_size=parallel_config.world_size,
rank=rank,
distributed_init_method=distributed_init_method,
local_rank=self.local_rank,
backend="ccl")
ensure_model_parallel_initialized(
parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size)
# global all_reduce needed for overall oneccl warm up
torch.distributed.all_reduce(torch.zeros(1).xpu())
if parallel_config.pipeline_parallel_size > 1:
# Add pp group init to avoid
# p2p communication as the first call
get_pp_group().all_reduce(torch.zeros(1).xpu())
|