Skip to content

vllm.worker.tpu_model_runner

_ENABLE_TOP_P module-attribute

_ENABLE_TOP_P = False

_MAX_NUM_SAMPLES module-attribute

_MAX_NUM_SAMPLES = 128

_PAD_SLOT_ID module-attribute

_PAD_SLOT_ID = 1000000000

logger module-attribute

logger = init_logger(__name__)

ExecutionMode

Bases: Enum

Source code in vllm/worker/tpu_model_runner.py
class ExecutionMode(enum.Enum):
    PREFILL = enum.auto()
    DECODE = enum.auto()
    PREFIX_PREFILL = enum.auto()

    def is_prefill(self) -> bool:
        return self in (ExecutionMode.PREFILL, ExecutionMode.PREFIX_PREFILL)

DECODE class-attribute instance-attribute

DECODE = auto()

PREFILL class-attribute instance-attribute

PREFILL = auto()

PREFIX_PREFILL class-attribute instance-attribute

PREFIX_PREFILL = auto()

is_prefill

is_prefill() -> bool
Source code in vllm/worker/tpu_model_runner.py
def is_prefill(self) -> bool:
    return self in (ExecutionMode.PREFILL, ExecutionMode.PREFIX_PREFILL)

ModelInputForTPU dataclass

Bases: ModelRunnerInputBase

Source code in vllm/worker/tpu_model_runner.py
@dataclass(frozen=True)
class ModelInputForTPU(ModelRunnerInputBase):
    token_ids: torch.Tensor
    position_ids: torch.Tensor
    attn_metadata: AttentionMetadata
    input_lens: torch.Tensor
    t: torch.Tensor
    p: torch.Tensor
    num_samples: int
    n: List[int]
    seq_groups: List[List[int]]
    is_first_multi_step: bool = True
    is_last_step: bool = True
    virtual_engine: int = 0
    async_callback: Optional[Callable] = None

    def as_broadcastable_tensor_dict(
            self) -> Dict[str, Union[int, torch.Tensor]]:
        tensor_dict = {
            "token_ids": self.token_ids,
            "position_ids": self.position_ids,
            "input_lens": self.input_lens,
            "t": self.t,
            "p": self.p,
            "num_samples": self.num_samples,
            "n": self.n,
            "seq_groups": self.seq_groups,
            "is_first_multi_step": self.is_first_multi_step,
            "is_last_step": self.is_last_step,
            "virtual_engine": self.virtual_engine,
        }
        _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
        return tensor_dict

    @classmethod
    def from_broadcasted_tensor_dict(
        cls: Type["ModelInputForTPU"],
        tensor_dict: Dict[str, Any],
        attn_backend: Optional["AttentionBackend"] = None,
    ) -> "ModelInputForTPU":
        if attn_backend is not None:
            tensor_dict = _init_attn_metadata_from_tensor_dict(
                attn_backend, tensor_dict)
        return cls(**tensor_dict)

async_callback class-attribute instance-attribute

async_callback: Optional[Callable] = None

attn_metadata instance-attribute

attn_metadata: AttentionMetadata

input_lens instance-attribute

input_lens: Tensor

is_first_multi_step class-attribute instance-attribute

is_first_multi_step: bool = True

is_last_step class-attribute instance-attribute

is_last_step: bool = True

n instance-attribute

n: List[int]

num_samples instance-attribute

num_samples: int

p instance-attribute

p: Tensor

position_ids instance-attribute

position_ids: Tensor

seq_groups instance-attribute

seq_groups: List[List[int]]

t instance-attribute

t: Tensor

token_ids instance-attribute

token_ids: Tensor

virtual_engine class-attribute instance-attribute

virtual_engine: int = 0

__init__

__init__(
    token_ids: Tensor,
    position_ids: Tensor,
    attn_metadata: AttentionMetadata,
    input_lens: Tensor,
    t: Tensor,
    p: Tensor,
    num_samples: int,
    n: List[int],
    seq_groups: List[List[int]],
    is_first_multi_step: bool = True,
    is_last_step: bool = True,
    virtual_engine: int = 0,
    async_callback: Optional[Callable] = None,
) -> None

as_broadcastable_tensor_dict

as_broadcastable_tensor_dict() -> Dict[
    str, Union[int, Tensor]
]
Source code in vllm/worker/tpu_model_runner.py
def as_broadcastable_tensor_dict(
        self) -> Dict[str, Union[int, torch.Tensor]]:
    tensor_dict = {
        "token_ids": self.token_ids,
        "position_ids": self.position_ids,
        "input_lens": self.input_lens,
        "t": self.t,
        "p": self.p,
        "num_samples": self.num_samples,
        "n": self.n,
        "seq_groups": self.seq_groups,
        "is_first_multi_step": self.is_first_multi_step,
        "is_last_step": self.is_last_step,
        "virtual_engine": self.virtual_engine,
    }
    _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
    return tensor_dict

from_broadcasted_tensor_dict classmethod

from_broadcasted_tensor_dict(
    tensor_dict: Dict[str, Any],
    attn_backend: Optional[AttentionBackend] = None,
) -> ModelInputForTPU
Source code in vllm/worker/tpu_model_runner.py
@classmethod
def from_broadcasted_tensor_dict(
    cls: Type["ModelInputForTPU"],
    tensor_dict: Dict[str, Any],
    attn_backend: Optional["AttentionBackend"] = None,
) -> "ModelInputForTPU":
    if attn_backend is not None:
        tensor_dict = _init_attn_metadata_from_tensor_dict(
            attn_backend, tensor_dict)
    return cls(**tensor_dict)

ModelWrapper

Bases: Module

Source code in vllm/worker/tpu_model_runner.py
class ModelWrapper(nn.Module):

    def __init__(self, model: nn.Module):
        super().__init__()
        self.model = model

    def forward(
        self,
        token_ids: torch.Tensor,
        position_ids: torch.Tensor,
        input_lens: torch.Tensor,
        t: torch.Tensor,
        p: torch.Tensor,
        num_samples: int,
        kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
    ) -> torch.Tensor:
        """Executes the forward pass of the model and samples the next token.

        Args:
            token_ids: The input token IDs of shape [batch_size, seq_len].
            position_ids: The input position IDs of shape [batch_size, seq_len].
            input_lens: The actual input lengths of shape [batch_size].
            t: The sampling temperature of shape [batch_size].
            p: The top-p probability of shape [batch_size].
            num_samples: Number of samples to draw from each logits vector.
            kv_caches: The key and value caches. They can be None during the
                memory profiling at initialization.
        """
        batch_size, seq_len = token_ids.shape
        # Calculate the positions to sample from.
        start_indices = torch.arange(
            batch_size, dtype=torch.int32, device=input_lens.device) * seq_len
        logits_indices = start_indices + input_lens - 1
        attn_metadata = get_forward_context().attn_metadata

        # FIXME(woosuk): This is a temporary hack to avoid using the existing
        # sampler and sampling metadata.
        sampling_metadata = SamplingMetadata(
            seq_groups=[],
            selected_token_indices=logits_indices,
            categorized_sample_indices={},
            num_prompts=attn_metadata.num_prefills,
        )

        # Skip this in memory profiling at initialization.
        if kv_caches[0][0].numel() > 0:
            # index_copy_(slot_mapping) only works when the inserted dimension
            # is 0. However, the KV cache in the Pallas backend has the shape
            # [num_kv_heads, num_blocks, block_size, head_size]. To make it
            # work, we need to flatten the first three dimensions and modify
            # the slot_mapping accordingly.
            num_kv_heads, num_blocks, block_size, _ = kv_caches[0][0].shape
            slot_mapping = attn_metadata.slot_mapping
            slot_mapping = slot_mapping.flatten()
            head_indices = torch.arange(0,
                                        num_kv_heads,
                                        device=slot_mapping.device,
                                        dtype=slot_mapping.dtype)
            head_indices *= block_size * num_blocks
            slot_mapping = slot_mapping.repeat_interleave(num_kv_heads).view(
                -1, num_kv_heads)
            slot_mapping = slot_mapping + head_indices.view(1, -1)
            slot_mapping = slot_mapping.flatten()
            attn_metadata.slot_mapping = slot_mapping

        hidden_states = self.model(token_ids, position_ids)
        hidden_states = hidden_states.flatten(0, 1)
        logits = self.model.compute_logits(hidden_states, sampling_metadata)

        # Argmax sampling.
        argmax_token_ids = torch.argmax(logits, dim=-1, keepdim=True)
        argmax_token_ids = argmax_token_ids.repeat(1, num_samples)

        # Zero temperature means greedy decoding. Avoid division by zero.
        nonzero_t = torch.where(t != 0, t, 1.0)
        logits = logits / nonzero_t.unsqueeze(dim=1)
        if _ENABLE_TOP_P:
            logits = _apply_top_p(logits, p.unsqueeze(dim=1))

        # Random sampling.
        probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
        sampled_token_ids = torch.multinomial(probs,
                                              num_samples,
                                              replacement=True)
        if num_samples == 1:
            argmax_token_ids = argmax_token_ids.squeeze(dim=-1)
            sampled_token_ids = sampled_token_ids.squeeze(dim=-1)
        next_token_ids = torch.where(t != 0, sampled_token_ids,
                                     argmax_token_ids)
        return next_token_ids

model instance-attribute

model = model

__init__

__init__(model: Module)
Source code in vllm/worker/tpu_model_runner.py
def __init__(self, model: nn.Module):
    super().__init__()
    self.model = model

forward

forward(
    token_ids: Tensor,
    position_ids: Tensor,
    input_lens: Tensor,
    t: Tensor,
    p: Tensor,
    num_samples: int,
    kv_caches: List[Tuple[Tensor, Tensor]],
) -> Tensor

Executes the forward pass of the model and samples the next token.

Parameters:

Name Type Description Default
token_ids Tensor

The input token IDs of shape [batch_size, seq_len].

required
position_ids Tensor

The input position IDs of shape [batch_size, seq_len].

required
input_lens Tensor

The actual input lengths of shape [batch_size].

required
t Tensor

The sampling temperature of shape [batch_size].

required
p Tensor

The top-p probability of shape [batch_size].

required
num_samples int

Number of samples to draw from each logits vector.

required
kv_caches List[Tuple[Tensor, Tensor]]

The key and value caches. They can be None during the memory profiling at initialization.

required
Source code in vllm/worker/tpu_model_runner.py
def forward(
    self,
    token_ids: torch.Tensor,
    position_ids: torch.Tensor,
    input_lens: torch.Tensor,
    t: torch.Tensor,
    p: torch.Tensor,
    num_samples: int,
    kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
) -> torch.Tensor:
    """Executes the forward pass of the model and samples the next token.

    Args:
        token_ids: The input token IDs of shape [batch_size, seq_len].
        position_ids: The input position IDs of shape [batch_size, seq_len].
        input_lens: The actual input lengths of shape [batch_size].
        t: The sampling temperature of shape [batch_size].
        p: The top-p probability of shape [batch_size].
        num_samples: Number of samples to draw from each logits vector.
        kv_caches: The key and value caches. They can be None during the
            memory profiling at initialization.
    """
    batch_size, seq_len = token_ids.shape
    # Calculate the positions to sample from.
    start_indices = torch.arange(
        batch_size, dtype=torch.int32, device=input_lens.device) * seq_len
    logits_indices = start_indices + input_lens - 1
    attn_metadata = get_forward_context().attn_metadata

    # FIXME(woosuk): This is a temporary hack to avoid using the existing
    # sampler and sampling metadata.
    sampling_metadata = SamplingMetadata(
        seq_groups=[],
        selected_token_indices=logits_indices,
        categorized_sample_indices={},
        num_prompts=attn_metadata.num_prefills,
    )

    # Skip this in memory profiling at initialization.
    if kv_caches[0][0].numel() > 0:
        # index_copy_(slot_mapping) only works when the inserted dimension
        # is 0. However, the KV cache in the Pallas backend has the shape
        # [num_kv_heads, num_blocks, block_size, head_size]. To make it
        # work, we need to flatten the first three dimensions and modify
        # the slot_mapping accordingly.
        num_kv_heads, num_blocks, block_size, _ = kv_caches[0][0].shape
        slot_mapping = attn_metadata.slot_mapping
        slot_mapping = slot_mapping.flatten()
        head_indices = torch.arange(0,
                                    num_kv_heads,
                                    device=slot_mapping.device,
                                    dtype=slot_mapping.dtype)
        head_indices *= block_size * num_blocks
        slot_mapping = slot_mapping.repeat_interleave(num_kv_heads).view(
            -1, num_kv_heads)
        slot_mapping = slot_mapping + head_indices.view(1, -1)
        slot_mapping = slot_mapping.flatten()
        attn_metadata.slot_mapping = slot_mapping

    hidden_states = self.model(token_ids, position_ids)
    hidden_states = hidden_states.flatten(0, 1)
    logits = self.model.compute_logits(hidden_states, sampling_metadata)

    # Argmax sampling.
    argmax_token_ids = torch.argmax(logits, dim=-1, keepdim=True)
    argmax_token_ids = argmax_token_ids.repeat(1, num_samples)

    # Zero temperature means greedy decoding. Avoid division by zero.
    nonzero_t = torch.where(t != 0, t, 1.0)
    logits = logits / nonzero_t.unsqueeze(dim=1)
    if _ENABLE_TOP_P:
        logits = _apply_top_p(logits, p.unsqueeze(dim=1))

    # Random sampling.
    probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
    sampled_token_ids = torch.multinomial(probs,
                                          num_samples,
                                          replacement=True)
    if num_samples == 1:
        argmax_token_ids = argmax_token_ids.squeeze(dim=-1)
        sampled_token_ids = sampled_token_ids.squeeze(dim=-1)
    next_token_ids = torch.where(t != 0, sampled_token_ids,
                                 argmax_token_ids)
    return next_token_ids

TPUModelRunner

Bases: ModelRunnerBase[ModelInputForTPU]

Source code in vllm/worker/tpu_model_runner.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
class TPUModelRunner(ModelRunnerBase[ModelInputForTPU]):

    def __init__(
        self,
        vllm_config: VllmConfig,
        is_driver_worker: bool = False,
    ):
        ModelRunnerBase.__init__(self, vllm_config=vllm_config)
        self.is_driver_worker = is_driver_worker

        self.block_size = self.cache_config.block_size
        self.max_num_blocks_per_seq = (self.model_config.max_model_len //
                                       self.block_size)
        self.block_tables = np.zeros(
            (self.scheduler_config.max_num_seqs, self.max_num_blocks_per_seq),
            dtype=np.int32)
        self.attn_backend = get_attn_backend(
            self.model_config.get_head_size(),
            self.model_config.dtype,
            self.cache_config.cache_dtype,
            self.block_size,
            self.model_config.is_attention_free,
            False,
        )
        self.cached_step_outputs: List[torch.Tensor] = []

        smem_size = 512 * 1024
        block_table_size = 4 * self.block_tables.size
        if block_table_size >= smem_size:
            logger.warning(
                "The max_model_len (%d) is too large. This may degrade the "
                "performance due to the insufficient smem size. Consider "
                "setting --max-model-len to a smaller value, like %d.",
                self.model_config.max_model_len,
                self.model_config.max_model_len /
                (block_table_size / smem_size))

    def load_model(self) -> None:
        self.device = self.device_config.device

        # NOTE(woosuk): While the executor assigns the TP ranks to the worker
        # process, the ranks can be different from the ranks internally assigned
        # by the xm runtime. Therefore, there is a mismatch in the rank
        # assignment between the gloo (cpu) runtime and the xm (tpu) runtime.
        # This is not a problem in linear layers because all-reduce is
        # rank-agnostic. However, it matters for all-gather as the ranks
        # determine the order of concatenating the output tensors.
        # As a workaround, we use the xm's rank assignment only when loading
        # the embedding weights.
        xm_tp_rank = xr.global_ordinal()
        with patch(
                "vllm.model_executor.layers.vocab_parallel_embedding."
                "get_tensor_model_parallel_rank",
                return_value=xm_tp_rank):
            model = get_model(vllm_config=self.vllm_config)
        model = model.eval()
        xm.wait_device_ops()
        model = ModelWrapper(model)
        self.model = torch.compile(model,
                                   backend="openxla",
                                   fullgraph=True,
                                   dynamic=False)

    def get_model(self) -> nn.Module:
        return self.model.model

    def _dummy_run(
        self,
        batch_size: int,
        seq_len: int,
        kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
        exec_mode: ExecutionMode,
    ) -> None:
        exec_mode = ExecutionMode(exec_mode)
        if exec_mode.is_prefill():
            seq_len = (seq_len + 15) // 16 * 16
            token_ids = torch.zeros((batch_size, seq_len),
                                    dtype=torch.int32,
                                    device=self.device)
            position_ids = torch.zeros((batch_size, seq_len),
                                       dtype=torch.int32,
                                       device=self.device)
            slot_mapping = torch.zeros((batch_size, seq_len),
                                       dtype=torch.int64,
                                       device=self.device)
            input_lens = torch.ones((batch_size, ),
                                    dtype=torch.int32,
                                    device=self.device)
            if exec_mode == ExecutionMode.PREFILL:
                attn_metadata = self.attn_backend.make_metadata(
                    num_prefills=batch_size,
                    num_prefill_tokens=batch_size * seq_len,
                    num_decode_tokens=0,
                    slot_mapping=slot_mapping,
                    multi_modal_placeholder_index_maps=None,
                    enable_kv_scales_calculation=False,
                    block_tables=None,
                    context_lens=None,
                    effective_query_lens=None,
                )
            else:
                context_lens = torch.ones((batch_size, ),
                                          dtype=torch.int32,
                                          device=self.device)
                block_tables = torch.tensor(self.block_tables[:batch_size],
                                            dtype=torch.int32,
                                            device=self.device)
                effective_query_lens = torch.ones_like(context_lens)
                attn_metadata = self.attn_backend.make_metadata(
                    num_prefills=batch_size,
                    num_prefill_tokens=batch_size * seq_len,
                    num_decode_tokens=0,
                    slot_mapping=slot_mapping,
                    multi_modal_placeholder_index_maps=None,
                    enable_kv_scales_calculation=False,
                    block_tables=block_tables,
                    context_lens=context_lens,
                    effective_query_lens=effective_query_lens,
                )
        else:
            assert seq_len == 1
            token_ids = torch.zeros((batch_size, seq_len),
                                    dtype=torch.int32,
                                    device=self.device)
            position_ids = torch.zeros((batch_size, seq_len),
                                       dtype=torch.int32,
                                       device=self.device)
            slot_mapping = torch.zeros((batch_size, seq_len),
                                       dtype=torch.int64,
                                       device=self.device)
            block_tables = torch.zeros(
                (batch_size, self.max_num_blocks_per_seq),
                dtype=torch.int32,
                device=self.device)
            context_lens = torch.ones((batch_size, ),
                                      dtype=torch.int32,
                                      device=self.device)
            input_lens = torch.ones((batch_size, ),
                                    dtype=torch.int32,
                                    device=self.device)
            attn_metadata = self.attn_backend.make_metadata(
                num_prefills=0,
                num_prefill_tokens=0,
                num_decode_tokens=batch_size * seq_len,
                slot_mapping=slot_mapping,
                multi_modal_placeholder_index_maps=None,
                enable_kv_scales_calculation=False,
                block_tables=block_tables,
                context_lens=context_lens,
            )
        t = torch.ones((batch_size, ), dtype=torch.float32, device=self.device)
        p = torch.ones((batch_size, ), dtype=torch.float32, device=self.device)
        num_samples = _MAX_NUM_SAMPLES if exec_mode.is_prefill() else 1

        # NOTE(woosuk): There are two stages of compilation: torch.compile and
        # XLA compilation. Using `mark_dynamic` can reduce the torch.compile
        # overhead by reusing the FX graph for different shapes.
        # However, the XLA graph will still require static shapes and needs to
        # be re-compiled for every different shapes. This overhead is inevitable
        # in the first run, but can be skipped afterwards as we cache the XLA
        # graphs in the disk (VLLM_XLA_CACHE_PATH).
        if exec_mode.is_prefill():
            # Prefll
            torch._dynamo.mark_dynamic(token_ids, 1)
            torch._dynamo.mark_dynamic(position_ids, 1)
            torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 1)
        else:
            # Decode
            torch._dynamo.mark_dynamic(token_ids, 0)
            torch._dynamo.mark_dynamic(position_ids, 0)
            torch._dynamo.mark_dynamic(input_lens, 0)
            torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 0)
            torch._dynamo.mark_dynamic(attn_metadata.context_lens, 0)
            torch._dynamo.mark_dynamic(attn_metadata.block_tables, 0)
            torch._dynamo.mark_dynamic(t, 0)
            torch._dynamo.mark_dynamic(p, 0)
        # Dummy run.
        with set_forward_context(attn_metadata, self.vllm_config, 0):
            self.model(token_ids, position_ids, input_lens, t, p, num_samples,
                       kv_caches)

    def warmup_model(
        self,
        kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
    ) -> None:
        # Prefill
        logger.info("Compiling the model with different input shapes...")
        start = time.time()
        for batch_size in [1]:
            seq_len = 16
            while seq_len <= self.model_config.max_model_len:
                self._dummy_run(batch_size,
                                seq_len,
                                kv_caches,
                                exec_mode=ExecutionMode.PREFILL)
                xm.wait_device_ops()
                logger.info("batch_size: %d, seq_len: %d", batch_size, seq_len)
                num_tokens = batch_size * seq_len
                if num_tokens >= self.scheduler_config.max_num_batched_tokens:
                    break
                seq_len = seq_len * 2

        end = time.time()
        logger.info("Compilation for prefill done in %.2f s.", end - start)

        # Prefix prefill
        if self.cache_config.enable_prefix_caching:
            logger.info("Compiling the model with different input shapes for "
                        "prefix prefill...")
            start = time.time()
            for batch_size in [1]:
                seq_len = 16
                while seq_len <= self.model_config.max_model_len:
                    self._dummy_run(batch_size,
                                    seq_len,
                                    kv_caches,
                                    exec_mode=ExecutionMode.PREFIX_PREFILL)
                    xm.wait_device_ops()
                    logger.info("batch_size: %d, seq_len: %d", batch_size,
                                seq_len)
                    num_tokens = batch_size * seq_len
                    if (num_tokens
                            >= self.scheduler_config.max_num_batched_tokens):
                        break
                    seq_len = seq_len * 2
            end = time.time()
            logger.info("Compilation for prefix prefill done in %.2f s.",
                        end - start)

        # Decode
        start = time.time()
        seq_len = 1
        batch_size = 8  # Must be in sync with _get_padded_batch_size()
        while True:
            self._dummy_run(batch_size,
                            seq_len,
                            kv_caches,
                            exec_mode=ExecutionMode.DECODE)
            xm.wait_device_ops()
            logger.info("batch_size: %d, seq_len: %d", batch_size, seq_len)

            if batch_size >= self.scheduler_config.max_num_seqs:
                break
            batch_size = batch_size + 16 if batch_size >= 16 else batch_size * 2

        end = time.time()
        logger.info("Compilation for decode done in %.2f s.", end - start)

    def _prepare_prompt(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
    ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, torch.Tensor]:
        assert len(seq_group_metadata_list) > 0
        input_tokens: List[int] = []
        input_positions: List[int] = []
        prompt_lens: List[int] = []
        context_lens: List[int] = []
        slot_mapping: List[int] = []

        for batch_idx, seq_group_metadata in enumerate(
                seq_group_metadata_list):
            assert seq_group_metadata.is_prompt
            seq_ids = list(seq_group_metadata.seq_data.keys())
            assert len(seq_ids) == 1
            seq_id = seq_ids[0]

            seq_data = seq_group_metadata.seq_data[seq_id]
            # Could include output tokens when a request is preempted.
            prompt_tokens = seq_data.get_token_ids()
            seq_len = len(prompt_tokens)

            num_computed_blocks = len(seq_group_metadata.computed_block_nums)
            num_computed_tokens = num_computed_blocks * self.block_size
            if num_computed_tokens > 0:
                prompt_tokens = prompt_tokens[num_computed_tokens:]
                context_lens.append(seq_len)
            else:
                context_lens.append(0)

            prompt_len = len(prompt_tokens)
            prompt_lens.append(prompt_len)

            input_tokens.extend(prompt_tokens)
            input_positions.extend(range(num_computed_tokens, seq_len))

            assert seq_group_metadata.block_tables is not None
            block_table = seq_group_metadata.block_tables[seq_id]
            for i in range(num_computed_tokens, seq_len):
                block_number = block_table[i // self.block_size]
                block_offset = i % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)
            if num_computed_tokens > 0:
                self.block_tables[batch_idx, :len(block_table)] = block_table

            # Add paddings to EACH prompt to the smallest power of 2 that is
            # greater than or equal to the prompt length.
            # We pad the seq_len to reduce the compilation overhead.
            # We execute each prompt individually (i.e., with batch_size 1)
            # because the FlashAttention kernel does not support ragged inputs.
            # TODO(woosuk): Use SplashAttention to support ragged inputs.
            padded_prompt_len = _get_padded_prefill_len(prompt_len)
            num_paddings = padded_prompt_len - prompt_len
            input_tokens += [0] * num_paddings
            input_positions += [0] * num_paddings
            slot_mapping += [_PAD_SLOT_ID] * num_paddings

        assert len(prompt_lens) > 0
        num_prefills = len(prompt_lens)
        input_tokens = torch.tensor(input_tokens,
                                    dtype=torch.int32,
                                    device="cpu")
        input_positions = torch.tensor(input_positions,
                                       dtype=torch.int32,
                                       device="cpu")
        slot_mapping = torch.tensor(slot_mapping,
                                    dtype=torch.int64,
                                    device="cpu")
        prompt_lens = torch.tensor(prompt_lens,
                                   dtype=torch.int32,
                                   device="cpu")
        context_lens = torch.tensor(context_lens,
                                    dtype=torch.int32,
                                    device="cpu")
        block_tables = torch.tensor(self.block_tables[:num_prefills],
                                    dtype=torch.int32,
                                    device="cpu")
        attn_metadata = self.attn_backend.make_metadata(
            num_prefills=num_prefills,
            num_prefill_tokens=0,  # NOTE: This is not used.
            num_decode_tokens=0,
            slot_mapping=slot_mapping,
            multi_modal_placeholder_index_maps=None,
            enable_kv_scales_calculation=False,
            block_tables=block_tables,
            context_lens=context_lens,
            effective_query_lens=prompt_lens,
        )
        return input_tokens, input_positions, attn_metadata, prompt_lens

    def _prepare_decode(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
    ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, torch.Tensor]:
        assert len(seq_group_metadata_list) > 0
        input_tokens: List[List[int]] = []
        input_positions: List[List[int]] = []
        slot_mapping: List[List[int]] = []
        context_lens: List[int] = []

        batch_idx = 0
        for seq_group_metadata in seq_group_metadata_list:
            assert not seq_group_metadata.is_prompt
            seq_ids = list(seq_group_metadata.seq_data.keys())
            for seq_id in seq_ids:
                seq_data = seq_group_metadata.seq_data[seq_id]
                generation_token = seq_data.get_last_token_id()
                input_tokens.append([generation_token])

                seq_len = seq_data.get_len()
                position = seq_len - 1
                input_positions.append([position])
                context_lens.append(seq_len)

                assert seq_group_metadata.block_tables is not None
                block_table = seq_group_metadata.block_tables[seq_id]
                self.block_tables[batch_idx, :len(block_table)] = block_table
                batch_idx += 1

                block_number = block_table[position // self.block_size]
                block_offset = position % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append([slot])

        batch_size = _get_padded_batch_size(batch_idx)
        num_paddings = batch_size - batch_idx
        input_tokens = input_tokens + [[0]] * num_paddings
        input_positions = input_positions + [[0]] * num_paddings
        slot_mapping = slot_mapping + [[_PAD_SLOT_ID]] * num_paddings
        context_lens = context_lens + [0] * num_paddings

        input_tokens = torch.tensor(input_tokens,
                                    dtype=torch.int32,
                                    device="cpu")
        input_positions = torch.tensor(input_positions,
                                       dtype=torch.int32,
                                       device="cpu")
        slot_mapping = torch.tensor(slot_mapping,
                                    dtype=torch.int64,
                                    device="cpu")
        context_lens = torch.tensor(context_lens,
                                    dtype=torch.int32,
                                    device="cpu")
        block_tables = torch.tensor(self.block_tables[:batch_size],
                                    dtype=torch.int32,
                                    device="cpu")
        input_lens = torch.tensor([1] * batch_size,
                                  dtype=torch.int32,
                                  device="cpu")
        attn_metadata = self.attn_backend.make_metadata(
            num_prefills=0,
            num_prefill_tokens=0,
            num_decode_tokens=batch_size,
            slot_mapping=slot_mapping,
            multi_modal_placeholder_index_maps=None,
            enable_kv_scales_calculation=False,
            block_tables=block_tables,
            context_lens=context_lens,
        )
        return input_tokens, input_positions, attn_metadata, input_lens

    def _prepare_sample(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        padded_batch_size: int,
    ) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
        assert len(seq_group_metadata_list) > 0
        t = []
        p = []
        n = []
        for seq_group_metadata in seq_group_metadata_list:
            sampling_params = seq_group_metadata.sampling_params
            t.append(sampling_params.temperature)
            if sampling_params.top_p != 1 and not _ENABLE_TOP_P:
                raise NotImplementedError(
                    "Top-p sampling is currently disabled for the TPU backend "
                    "due to performance issues.")
            p.append(sampling_params.top_p)
            if sampling_params.top_k > 0:
                raise NotImplementedError(
                    "Top-k sampling is currently disabled for the TPU backend "
                    "due to performance issues.")
            if sampling_params.n > _MAX_NUM_SAMPLES:
                raise NotImplementedError(
                    f"Best of > {_MAX_NUM_SAMPLES} is not supported by the TPU "
                    "backend.")
            n.append(sampling_params.n)
            if sampling_params.logprobs is not None:
                raise NotImplementedError(
                    "logprobs is not currently supported by the TPU backend.")
            if sampling_params.prompt_logprobs is not None:
                raise NotImplementedError(
                    "prompt_logprobs is not currently supported by the TPU "
                    "backend.")

            # Repeat the sampling params if the seq group has multiple seqs.
            num_seqs = len(seq_group_metadata.seq_data)
            t += [t[-1]] * (num_seqs - 1)
            p += [p[-1]] * (num_seqs - 1)
            n += [n[-1]] * (num_seqs - 1)

        num_paddings = padded_batch_size - len(t)
        t += [1.0] * num_paddings
        p += [1.0] * num_paddings

        t = torch.tensor(t, dtype=torch.float32, device="cpu")
        p = torch.tensor(p, dtype=torch.float32, device="cpu")
        return t, p, n

    def prepare_model_input(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        virtual_engine: int = 0,
        finished_requests_ids: Optional[List[str]] = None,
    ) -> ModelInputForTPU:
        del finished_requests_ids  # Unused.
        assert virtual_engine == 0
        assert len(seq_group_metadata_list) > 0
        # NOTE: We assume that all sequences in the group are all prompts or
        # all decodes.
        is_prompt = seq_group_metadata_list[0].is_prompt
        if is_prompt:
            inputs = self._prepare_prompt(seq_group_metadata_list)
        else:
            inputs = self._prepare_decode(seq_group_metadata_list)
        input_tokens, input_positions, attn_metadata, input_lens = inputs
        padded_batch_size = input_tokens.shape[0]
        t, p, n = self._prepare_sample(seq_group_metadata_list,
                                       padded_batch_size)
        num_samples = _MAX_NUM_SAMPLES if is_prompt else 1

        seq_groups = [
            list(metadata.seq_data.keys())
            for metadata in seq_group_metadata_list
        ]
        return ModelInputForTPU(input_tokens, input_positions, attn_metadata,
                                input_lens, t, p, num_samples, n, seq_groups)

    def make_model_input_from_broadcasted_tensor_dict(
            self, tensor_dict: Dict[str, Any]) -> ModelInputForTPU:
        model_input = ModelInputForTPU.from_broadcasted_tensor_dict(
            tensor_dict, attn_backend=self.attn_backend)
        return model_input

    @torch.no_grad()
    def execute_model(
        self,
        model_input: ModelInputForTPU,
        kv_caches: Optional[List[Any]],
        intermediate_tensors: Optional[IntermediateTensors] = None,
        num_steps: int = 1,
    ) -> List[SamplerOutput]:
        assert intermediate_tensors is None
        if not model_input.is_first_multi_step:
            if not model_input.is_last_step:
                return []

            use_async_out_proc = model_input.async_callback is not None
            sampler_outputs = []
            num_outputs = len(self.cached_step_outputs)
            for i in range(num_outputs):
                next_token_ids = self.cached_step_outputs.pop(0)
                next_token_ids = next_token_ids.cpu().tolist()
                sampler_output = _make_decode_output(next_token_ids,
                                                     model_input.seq_groups)
                sampler_outputs.append(sampler_output)

                if i < num_outputs - 1 and use_async_out_proc:
                    assert model_input.async_callback is not None
                    ctx = model_input.async_callback.keywords[  # type: ignore
                        "ctx"]
                    ctx.append_output(
                        outputs=[sampler_output],
                        seq_group_metadata_list=ctx.seq_group_metadata_list,
                        scheduler_outputs=ctx.scheduler_outputs,
                        is_async=False,
                        is_last_step=False,
                        is_first_step_output=i == 0)
                    model_input.async_callback()
            if use_async_out_proc:
                return [sampler_outputs[-1]]
            else:
                return sampler_outputs

        is_prompt = model_input.attn_metadata.num_prefills > 0
        if is_prompt:
            assert num_steps == 1
            # NOTE(woosuk): Since the FlashAttention kernel does not support
            # ragged inputs, we split the prompts into different batches and
            # process them separately. This is a temporary hack that should be
            # optimized by using SplashAttention.
            orig_slot_mapping = model_input.attn_metadata.slot_mapping
            orig_block_tables = model_input.attn_metadata.block_tables
            orig_context_lens = model_input.attn_metadata.context_lens
            orig_effective_query_lens = \
                model_input.attn_metadata.effective_query_lens
            batch_size = model_input.input_lens.shape[0]
            start_idx = 0
            next_token_ids = []
            for i in range(batch_size):
                # Get the actual prefill_len.
                prefill_len = model_input.input_lens[i:i + 1].item()
                prefill_len = _get_padded_prefill_len(prefill_len)
                end_idx = start_idx + prefill_len

                token_ids = model_input.token_ids[None, start_idx:end_idx].to(
                    self.device)
                position_ids = model_input.position_ids[None,
                                                        start_idx:end_idx].to(
                                                            self.device)
                attn_metadata = model_input.attn_metadata
                attn_metadata.num_prefills = 1
                attn_metadata.slot_mapping = orig_slot_mapping[
                    None, start_idx:end_idx].to(self.device)
                if orig_context_lens[i].item() > 0:
                    attn_metadata.context_lens = orig_context_lens[i:i + 1].to(
                        self.device)
                    attn_metadata.block_tables = orig_block_tables[
                        i].unsqueeze(0).to(self.device)
                    attn_metadata.effective_query_lens = \
                        orig_effective_query_lens[i:i + 1].to(self.device)
                else:
                    attn_metadata.context_lens = None
                    attn_metadata.block_tables = None
                    attn_metadata.effective_query_lens = None
                input_lens = model_input.input_lens[i:i + 1].to(self.device)
                t = model_input.t[i:i + 1].to(self.device)
                p = model_input.p[i:i + 1].to(self.device)
                with set_forward_context(model_input.attn_metadata,
                                         self.vllm_config,
                                         model_input.virtual_engine):
                    output_token_ids = self.model(token_ids, position_ids,
                                                  input_lens, t, p,
                                                  model_input.num_samples,
                                                  kv_caches)
                next_token_ids.append(output_token_ids[0])
                start_idx = end_idx

            if model_input.async_callback is not None:
                model_input.async_callback()
            # Retrieve the outputs to CPU.
            next_token_ids = [
                output_token_ids.cpu().tolist()
                for output_token_ids in next_token_ids
            ]

            # NOTE(woosuk): Minimal code to construct the sampler outputs.
            # The TPU backend does not reuse the sampler, since the TPU backend
            # does not support advanced sampling parameters such as logprobs.
            zero_logprob = Logprob(0.0)
            sampler_outputs = []
            for i, seq_group in enumerate(model_input.seq_groups):
                seq_ids = seq_group
                assert len(seq_ids) == 1
                seq_id = seq_ids[0]
                seq_outputs = []
                for j in range(model_input.n[i]):
                    next_token_id = next_token_ids[i][j]
                    seq_outputs.append(
                        SequenceOutput(seq_id, next_token_id,
                                       {next_token_id: zero_logprob}))
                sampler_outputs.append(
                    CompletionSequenceGroupOutput(seq_outputs, None))
            return [SamplerOutput(sampler_outputs)]
        else:
            token_ids = model_input.token_ids.to(self.device)
            position_ids = model_input.position_ids.to(self.device)
            attn_metadata = model_input.attn_metadata
            attn_metadata.slot_mapping = attn_metadata.slot_mapping.to(
                self.device)
            attn_metadata.block_tables = attn_metadata.block_tables.to(
                self.device)
            attn_metadata.context_lens = attn_metadata.context_lens.to(
                self.device)
            t = model_input.t.to(self.device)
            p = model_input.p.to(self.device)
            input_lens = model_input.input_lens.to(self.device)
            for i in range(num_steps):
                slot_mapping = attn_metadata.slot_mapping
                with set_forward_context(model_input.attn_metadata,
                                         self.vllm_config,
                                         model_input.virtual_engine):
                    output_token_ids = self.model(token_ids, position_ids,
                                                  input_lens, t, p,
                                                  model_input.num_samples,
                                                  kv_caches)
                self.cached_step_outputs.append(output_token_ids)

                if i < num_steps - 1:
                    # Prepare the inputs for the next step.
                    token_ids = output_token_ids.unsqueeze(dim=1).int()
                    position_ids = position_ids + 1
                    attn_metadata.context_lens = attn_metadata.context_lens + 1

                    block_tables = attn_metadata.block_tables
                    block_number = block_tables.gather(
                        1,
                        position_ids.long() // self.block_size)
                    block_offset = position_ids % self.block_size

                    is_padding = slot_mapping == _PAD_SLOT_ID
                    slot_mapping = block_number * self.block_size + block_offset
                    slot_mapping = slot_mapping.long()
                    slot_mapping = torch.where(is_padding, _PAD_SLOT_ID,
                                               slot_mapping)
                    attn_metadata.slot_mapping = slot_mapping

            if model_input.async_callback is not None:
                model_input.async_callback()

            if num_steps > 1:
                return []
            # Retrieve the outputs to CPU.
            next_token_ids = self.cached_step_outputs.pop(0)
            next_token_ids = next_token_ids.cpu().tolist()
            sampler_output = _make_decode_output(next_token_ids,
                                                 model_input.seq_groups)
            return [sampler_output]

attn_backend instance-attribute

attn_backend = get_attn_backend(
    get_head_size(),
    dtype,
    cache_dtype,
    block_size,
    is_attention_free,
    False,
)

block_size instance-attribute

block_size = block_size

block_tables instance-attribute

block_tables = zeros(
    (max_num_seqs, max_num_blocks_per_seq), dtype=int32
)

cached_step_outputs instance-attribute

cached_step_outputs: List[Tensor] = []

is_driver_worker instance-attribute

is_driver_worker = is_driver_worker

max_num_blocks_per_seq instance-attribute

max_num_blocks_per_seq = max_model_len // block_size

__init__

__init__(
    vllm_config: VllmConfig, is_driver_worker: bool = False
)
Source code in vllm/worker/tpu_model_runner.py
def __init__(
    self,
    vllm_config: VllmConfig,
    is_driver_worker: bool = False,
):
    ModelRunnerBase.__init__(self, vllm_config=vllm_config)
    self.is_driver_worker = is_driver_worker

    self.block_size = self.cache_config.block_size
    self.max_num_blocks_per_seq = (self.model_config.max_model_len //
                                   self.block_size)
    self.block_tables = np.zeros(
        (self.scheduler_config.max_num_seqs, self.max_num_blocks_per_seq),
        dtype=np.int32)
    self.attn_backend = get_attn_backend(
        self.model_config.get_head_size(),
        self.model_config.dtype,
        self.cache_config.cache_dtype,
        self.block_size,
        self.model_config.is_attention_free,
        False,
    )
    self.cached_step_outputs: List[torch.Tensor] = []

    smem_size = 512 * 1024
    block_table_size = 4 * self.block_tables.size
    if block_table_size >= smem_size:
        logger.warning(
            "The max_model_len (%d) is too large. This may degrade the "
            "performance due to the insufficient smem size. Consider "
            "setting --max-model-len to a smaller value, like %d.",
            self.model_config.max_model_len,
            self.model_config.max_model_len /
            (block_table_size / smem_size))

_dummy_run

_dummy_run(
    batch_size: int,
    seq_len: int,
    kv_caches: List[Tuple[Tensor, Tensor]],
    exec_mode: ExecutionMode,
) -> None
Source code in vllm/worker/tpu_model_runner.py
def _dummy_run(
    self,
    batch_size: int,
    seq_len: int,
    kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
    exec_mode: ExecutionMode,
) -> None:
    exec_mode = ExecutionMode(exec_mode)
    if exec_mode.is_prefill():
        seq_len = (seq_len + 15) // 16 * 16
        token_ids = torch.zeros((batch_size, seq_len),
                                dtype=torch.int32,
                                device=self.device)
        position_ids = torch.zeros((batch_size, seq_len),
                                   dtype=torch.int32,
                                   device=self.device)
        slot_mapping = torch.zeros((batch_size, seq_len),
                                   dtype=torch.int64,
                                   device=self.device)
        input_lens = torch.ones((batch_size, ),
                                dtype=torch.int32,
                                device=self.device)
        if exec_mode == ExecutionMode.PREFILL:
            attn_metadata = self.attn_backend.make_metadata(
                num_prefills=batch_size,
                num_prefill_tokens=batch_size * seq_len,
                num_decode_tokens=0,
                slot_mapping=slot_mapping,
                multi_modal_placeholder_index_maps=None,
                enable_kv_scales_calculation=False,
                block_tables=None,
                context_lens=None,
                effective_query_lens=None,
            )
        else:
            context_lens = torch.ones((batch_size, ),
                                      dtype=torch.int32,
                                      device=self.device)
            block_tables = torch.tensor(self.block_tables[:batch_size],
                                        dtype=torch.int32,
                                        device=self.device)
            effective_query_lens = torch.ones_like(context_lens)
            attn_metadata = self.attn_backend.make_metadata(
                num_prefills=batch_size,
                num_prefill_tokens=batch_size * seq_len,
                num_decode_tokens=0,
                slot_mapping=slot_mapping,
                multi_modal_placeholder_index_maps=None,
                enable_kv_scales_calculation=False,
                block_tables=block_tables,
                context_lens=context_lens,
                effective_query_lens=effective_query_lens,
            )
    else:
        assert seq_len == 1
        token_ids = torch.zeros((batch_size, seq_len),
                                dtype=torch.int32,
                                device=self.device)
        position_ids = torch.zeros((batch_size, seq_len),
                                   dtype=torch.int32,
                                   device=self.device)
        slot_mapping = torch.zeros((batch_size, seq_len),
                                   dtype=torch.int64,
                                   device=self.device)
        block_tables = torch.zeros(
            (batch_size, self.max_num_blocks_per_seq),
            dtype=torch.int32,
            device=self.device)
        context_lens = torch.ones((batch_size, ),
                                  dtype=torch.int32,
                                  device=self.device)
        input_lens = torch.ones((batch_size, ),
                                dtype=torch.int32,
                                device=self.device)
        attn_metadata = self.attn_backend.make_metadata(
            num_prefills=0,
            num_prefill_tokens=0,
            num_decode_tokens=batch_size * seq_len,
            slot_mapping=slot_mapping,
            multi_modal_placeholder_index_maps=None,
            enable_kv_scales_calculation=False,
            block_tables=block_tables,
            context_lens=context_lens,
        )
    t = torch.ones((batch_size, ), dtype=torch.float32, device=self.device)
    p = torch.ones((batch_size, ), dtype=torch.float32, device=self.device)
    num_samples = _MAX_NUM_SAMPLES if exec_mode.is_prefill() else 1

    # NOTE(woosuk): There are two stages of compilation: torch.compile and
    # XLA compilation. Using `mark_dynamic` can reduce the torch.compile
    # overhead by reusing the FX graph for different shapes.
    # However, the XLA graph will still require static shapes and needs to
    # be re-compiled for every different shapes. This overhead is inevitable
    # in the first run, but can be skipped afterwards as we cache the XLA
    # graphs in the disk (VLLM_XLA_CACHE_PATH).
    if exec_mode.is_prefill():
        # Prefll
        torch._dynamo.mark_dynamic(token_ids, 1)
        torch._dynamo.mark_dynamic(position_ids, 1)
        torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 1)
    else:
        # Decode
        torch._dynamo.mark_dynamic(token_ids, 0)
        torch._dynamo.mark_dynamic(position_ids, 0)
        torch._dynamo.mark_dynamic(input_lens, 0)
        torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 0)
        torch._dynamo.mark_dynamic(attn_metadata.context_lens, 0)
        torch._dynamo.mark_dynamic(attn_metadata.block_tables, 0)
        torch._dynamo.mark_dynamic(t, 0)
        torch._dynamo.mark_dynamic(p, 0)
    # Dummy run.
    with set_forward_context(attn_metadata, self.vllm_config, 0):
        self.model(token_ids, position_ids, input_lens, t, p, num_samples,
                   kv_caches)

_prepare_decode

_prepare_decode(
    seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[Tensor, Tensor, AttentionMetadata, Tensor]
Source code in vllm/worker/tpu_model_runner.py
def _prepare_decode(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, torch.Tensor]:
    assert len(seq_group_metadata_list) > 0
    input_tokens: List[List[int]] = []
    input_positions: List[List[int]] = []
    slot_mapping: List[List[int]] = []
    context_lens: List[int] = []

    batch_idx = 0
    for seq_group_metadata in seq_group_metadata_list:
        assert not seq_group_metadata.is_prompt
        seq_ids = list(seq_group_metadata.seq_data.keys())
        for seq_id in seq_ids:
            seq_data = seq_group_metadata.seq_data[seq_id]
            generation_token = seq_data.get_last_token_id()
            input_tokens.append([generation_token])

            seq_len = seq_data.get_len()
            position = seq_len - 1
            input_positions.append([position])
            context_lens.append(seq_len)

            assert seq_group_metadata.block_tables is not None
            block_table = seq_group_metadata.block_tables[seq_id]
            self.block_tables[batch_idx, :len(block_table)] = block_table
            batch_idx += 1

            block_number = block_table[position // self.block_size]
            block_offset = position % self.block_size
            slot = block_number * self.block_size + block_offset
            slot_mapping.append([slot])

    batch_size = _get_padded_batch_size(batch_idx)
    num_paddings = batch_size - batch_idx
    input_tokens = input_tokens + [[0]] * num_paddings
    input_positions = input_positions + [[0]] * num_paddings
    slot_mapping = slot_mapping + [[_PAD_SLOT_ID]] * num_paddings
    context_lens = context_lens + [0] * num_paddings

    input_tokens = torch.tensor(input_tokens,
                                dtype=torch.int32,
                                device="cpu")
    input_positions = torch.tensor(input_positions,
                                   dtype=torch.int32,
                                   device="cpu")
    slot_mapping = torch.tensor(slot_mapping,
                                dtype=torch.int64,
                                device="cpu")
    context_lens = torch.tensor(context_lens,
                                dtype=torch.int32,
                                device="cpu")
    block_tables = torch.tensor(self.block_tables[:batch_size],
                                dtype=torch.int32,
                                device="cpu")
    input_lens = torch.tensor([1] * batch_size,
                              dtype=torch.int32,
                              device="cpu")
    attn_metadata = self.attn_backend.make_metadata(
        num_prefills=0,
        num_prefill_tokens=0,
        num_decode_tokens=batch_size,
        slot_mapping=slot_mapping,
        multi_modal_placeholder_index_maps=None,
        enable_kv_scales_calculation=False,
        block_tables=block_tables,
        context_lens=context_lens,
    )
    return input_tokens, input_positions, attn_metadata, input_lens

_prepare_prompt

_prepare_prompt(
    seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[Tensor, Tensor, AttentionMetadata, Tensor]
Source code in vllm/worker/tpu_model_runner.py
def _prepare_prompt(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, torch.Tensor]:
    assert len(seq_group_metadata_list) > 0
    input_tokens: List[int] = []
    input_positions: List[int] = []
    prompt_lens: List[int] = []
    context_lens: List[int] = []
    slot_mapping: List[int] = []

    for batch_idx, seq_group_metadata in enumerate(
            seq_group_metadata_list):
        assert seq_group_metadata.is_prompt
        seq_ids = list(seq_group_metadata.seq_data.keys())
        assert len(seq_ids) == 1
        seq_id = seq_ids[0]

        seq_data = seq_group_metadata.seq_data[seq_id]
        # Could include output tokens when a request is preempted.
        prompt_tokens = seq_data.get_token_ids()
        seq_len = len(prompt_tokens)

        num_computed_blocks = len(seq_group_metadata.computed_block_nums)
        num_computed_tokens = num_computed_blocks * self.block_size
        if num_computed_tokens > 0:
            prompt_tokens = prompt_tokens[num_computed_tokens:]
            context_lens.append(seq_len)
        else:
            context_lens.append(0)

        prompt_len = len(prompt_tokens)
        prompt_lens.append(prompt_len)

        input_tokens.extend(prompt_tokens)
        input_positions.extend(range(num_computed_tokens, seq_len))

        assert seq_group_metadata.block_tables is not None
        block_table = seq_group_metadata.block_tables[seq_id]
        for i in range(num_computed_tokens, seq_len):
            block_number = block_table[i // self.block_size]
            block_offset = i % self.block_size
            slot = block_number * self.block_size + block_offset
            slot_mapping.append(slot)
        if num_computed_tokens > 0:
            self.block_tables[batch_idx, :len(block_table)] = block_table

        # Add paddings to EACH prompt to the smallest power of 2 that is
        # greater than or equal to the prompt length.
        # We pad the seq_len to reduce the compilation overhead.
        # We execute each prompt individually (i.e., with batch_size 1)
        # because the FlashAttention kernel does not support ragged inputs.
        # TODO(woosuk): Use SplashAttention to support ragged inputs.
        padded_prompt_len = _get_padded_prefill_len(prompt_len)
        num_paddings = padded_prompt_len - prompt_len
        input_tokens += [0] * num_paddings
        input_positions += [0] * num_paddings
        slot_mapping += [_PAD_SLOT_ID] * num_paddings

    assert len(prompt_lens) > 0
    num_prefills = len(prompt_lens)
    input_tokens = torch.tensor(input_tokens,
                                dtype=torch.int32,
                                device="cpu")
    input_positions = torch.tensor(input_positions,
                                   dtype=torch.int32,
                                   device="cpu")
    slot_mapping = torch.tensor(slot_mapping,
                                dtype=torch.int64,
                                device="cpu")
    prompt_lens = torch.tensor(prompt_lens,
                               dtype=torch.int32,
                               device="cpu")
    context_lens = torch.tensor(context_lens,
                                dtype=torch.int32,
                                device="cpu")
    block_tables = torch.tensor(self.block_tables[:num_prefills],
                                dtype=torch.int32,
                                device="cpu")
    attn_metadata = self.attn_backend.make_metadata(
        num_prefills=num_prefills,
        num_prefill_tokens=0,  # NOTE: This is not used.
        num_decode_tokens=0,
        slot_mapping=slot_mapping,
        multi_modal_placeholder_index_maps=None,
        enable_kv_scales_calculation=False,
        block_tables=block_tables,
        context_lens=context_lens,
        effective_query_lens=prompt_lens,
    )
    return input_tokens, input_positions, attn_metadata, prompt_lens

_prepare_sample

_prepare_sample(
    seq_group_metadata_list: List[SequenceGroupMetadata],
    padded_batch_size: int,
) -> Tuple[Tensor, Tensor, List[int]]
Source code in vllm/worker/tpu_model_runner.py
def _prepare_sample(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
    padded_batch_size: int,
) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
    assert len(seq_group_metadata_list) > 0
    t = []
    p = []
    n = []
    for seq_group_metadata in seq_group_metadata_list:
        sampling_params = seq_group_metadata.sampling_params
        t.append(sampling_params.temperature)
        if sampling_params.top_p != 1 and not _ENABLE_TOP_P:
            raise NotImplementedError(
                "Top-p sampling is currently disabled for the TPU backend "
                "due to performance issues.")
        p.append(sampling_params.top_p)
        if sampling_params.top_k > 0:
            raise NotImplementedError(
                "Top-k sampling is currently disabled for the TPU backend "
                "due to performance issues.")
        if sampling_params.n > _MAX_NUM_SAMPLES:
            raise NotImplementedError(
                f"Best of > {_MAX_NUM_SAMPLES} is not supported by the TPU "
                "backend.")
        n.append(sampling_params.n)
        if sampling_params.logprobs is not None:
            raise NotImplementedError(
                "logprobs is not currently supported by the TPU backend.")
        if sampling_params.prompt_logprobs is not None:
            raise NotImplementedError(
                "prompt_logprobs is not currently supported by the TPU "
                "backend.")

        # Repeat the sampling params if the seq group has multiple seqs.
        num_seqs = len(seq_group_metadata.seq_data)
        t += [t[-1]] * (num_seqs - 1)
        p += [p[-1]] * (num_seqs - 1)
        n += [n[-1]] * (num_seqs - 1)

    num_paddings = padded_batch_size - len(t)
    t += [1.0] * num_paddings
    p += [1.0] * num_paddings

    t = torch.tensor(t, dtype=torch.float32, device="cpu")
    p = torch.tensor(p, dtype=torch.float32, device="cpu")
    return t, p, n

execute_model

execute_model(
    model_input: ModelInputForTPU,
    kv_caches: Optional[List[Any]],
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    num_steps: int = 1,
) -> List[SamplerOutput]
Source code in vllm/worker/tpu_model_runner.py
@torch.no_grad()
def execute_model(
    self,
    model_input: ModelInputForTPU,
    kv_caches: Optional[List[Any]],
    intermediate_tensors: Optional[IntermediateTensors] = None,
    num_steps: int = 1,
) -> List[SamplerOutput]:
    assert intermediate_tensors is None
    if not model_input.is_first_multi_step:
        if not model_input.is_last_step:
            return []

        use_async_out_proc = model_input.async_callback is not None
        sampler_outputs = []
        num_outputs = len(self.cached_step_outputs)
        for i in range(num_outputs):
            next_token_ids = self.cached_step_outputs.pop(0)
            next_token_ids = next_token_ids.cpu().tolist()
            sampler_output = _make_decode_output(next_token_ids,
                                                 model_input.seq_groups)
            sampler_outputs.append(sampler_output)

            if i < num_outputs - 1 and use_async_out_proc:
                assert model_input.async_callback is not None
                ctx = model_input.async_callback.keywords[  # type: ignore
                    "ctx"]
                ctx.append_output(
                    outputs=[sampler_output],
                    seq_group_metadata_list=ctx.seq_group_metadata_list,
                    scheduler_outputs=ctx.scheduler_outputs,
                    is_async=False,
                    is_last_step=False,
                    is_first_step_output=i == 0)
                model_input.async_callback()
        if use_async_out_proc:
            return [sampler_outputs[-1]]
        else:
            return sampler_outputs

    is_prompt = model_input.attn_metadata.num_prefills > 0
    if is_prompt:
        assert num_steps == 1
        # NOTE(woosuk): Since the FlashAttention kernel does not support
        # ragged inputs, we split the prompts into different batches and
        # process them separately. This is a temporary hack that should be
        # optimized by using SplashAttention.
        orig_slot_mapping = model_input.attn_metadata.slot_mapping
        orig_block_tables = model_input.attn_metadata.block_tables
        orig_context_lens = model_input.attn_metadata.context_lens
        orig_effective_query_lens = \
            model_input.attn_metadata.effective_query_lens
        batch_size = model_input.input_lens.shape[0]
        start_idx = 0
        next_token_ids = []
        for i in range(batch_size):
            # Get the actual prefill_len.
            prefill_len = model_input.input_lens[i:i + 1].item()
            prefill_len = _get_padded_prefill_len(prefill_len)
            end_idx = start_idx + prefill_len

            token_ids = model_input.token_ids[None, start_idx:end_idx].to(
                self.device)
            position_ids = model_input.position_ids[None,
                                                    start_idx:end_idx].to(
                                                        self.device)
            attn_metadata = model_input.attn_metadata
            attn_metadata.num_prefills = 1
            attn_metadata.slot_mapping = orig_slot_mapping[
                None, start_idx:end_idx].to(self.device)
            if orig_context_lens[i].item() > 0:
                attn_metadata.context_lens = orig_context_lens[i:i + 1].to(
                    self.device)
                attn_metadata.block_tables = orig_block_tables[
                    i].unsqueeze(0).to(self.device)
                attn_metadata.effective_query_lens = \
                    orig_effective_query_lens[i:i + 1].to(self.device)
            else:
                attn_metadata.context_lens = None
                attn_metadata.block_tables = None
                attn_metadata.effective_query_lens = None
            input_lens = model_input.input_lens[i:i + 1].to(self.device)
            t = model_input.t[i:i + 1].to(self.device)
            p = model_input.p[i:i + 1].to(self.device)
            with set_forward_context(model_input.attn_metadata,
                                     self.vllm_config,
                                     model_input.virtual_engine):
                output_token_ids = self.model(token_ids, position_ids,
                                              input_lens, t, p,
                                              model_input.num_samples,
                                              kv_caches)
            next_token_ids.append(output_token_ids[0])
            start_idx = end_idx

        if model_input.async_callback is not None:
            model_input.async_callback()
        # Retrieve the outputs to CPU.
        next_token_ids = [
            output_token_ids.cpu().tolist()
            for output_token_ids in next_token_ids
        ]

        # NOTE(woosuk): Minimal code to construct the sampler outputs.
        # The TPU backend does not reuse the sampler, since the TPU backend
        # does not support advanced sampling parameters such as logprobs.
        zero_logprob = Logprob(0.0)
        sampler_outputs = []
        for i, seq_group in enumerate(model_input.seq_groups):
            seq_ids = seq_group
            assert len(seq_ids) == 1
            seq_id = seq_ids[0]
            seq_outputs = []
            for j in range(model_input.n[i]):
                next_token_id = next_token_ids[i][j]
                seq_outputs.append(
                    SequenceOutput(seq_id, next_token_id,
                                   {next_token_id: zero_logprob}))
            sampler_outputs.append(
                CompletionSequenceGroupOutput(seq_outputs, None))
        return [SamplerOutput(sampler_outputs)]
    else:
        token_ids = model_input.token_ids.to(self.device)
        position_ids = model_input.position_ids.to(self.device)
        attn_metadata = model_input.attn_metadata
        attn_metadata.slot_mapping = attn_metadata.slot_mapping.to(
            self.device)
        attn_metadata.block_tables = attn_metadata.block_tables.to(
            self.device)
        attn_metadata.context_lens = attn_metadata.context_lens.to(
            self.device)
        t = model_input.t.to(self.device)
        p = model_input.p.to(self.device)
        input_lens = model_input.input_lens.to(self.device)
        for i in range(num_steps):
            slot_mapping = attn_metadata.slot_mapping
            with set_forward_context(model_input.attn_metadata,
                                     self.vllm_config,
                                     model_input.virtual_engine):
                output_token_ids = self.model(token_ids, position_ids,
                                              input_lens, t, p,
                                              model_input.num_samples,
                                              kv_caches)
            self.cached_step_outputs.append(output_token_ids)

            if i < num_steps - 1:
                # Prepare the inputs for the next step.
                token_ids = output_token_ids.unsqueeze(dim=1).int()
                position_ids = position_ids + 1
                attn_metadata.context_lens = attn_metadata.context_lens + 1

                block_tables = attn_metadata.block_tables
                block_number = block_tables.gather(
                    1,
                    position_ids.long() // self.block_size)
                block_offset = position_ids % self.block_size

                is_padding = slot_mapping == _PAD_SLOT_ID
                slot_mapping = block_number * self.block_size + block_offset
                slot_mapping = slot_mapping.long()
                slot_mapping = torch.where(is_padding, _PAD_SLOT_ID,
                                           slot_mapping)
                attn_metadata.slot_mapping = slot_mapping

        if model_input.async_callback is not None:
            model_input.async_callback()

        if num_steps > 1:
            return []
        # Retrieve the outputs to CPU.
        next_token_ids = self.cached_step_outputs.pop(0)
        next_token_ids = next_token_ids.cpu().tolist()
        sampler_output = _make_decode_output(next_token_ids,
                                             model_input.seq_groups)
        return [sampler_output]

get_model

get_model() -> Module
Source code in vllm/worker/tpu_model_runner.py
def get_model(self) -> nn.Module:
    return self.model.model

load_model

load_model() -> None
Source code in vllm/worker/tpu_model_runner.py
def load_model(self) -> None:
    self.device = self.device_config.device

    # NOTE(woosuk): While the executor assigns the TP ranks to the worker
    # process, the ranks can be different from the ranks internally assigned
    # by the xm runtime. Therefore, there is a mismatch in the rank
    # assignment between the gloo (cpu) runtime and the xm (tpu) runtime.
    # This is not a problem in linear layers because all-reduce is
    # rank-agnostic. However, it matters for all-gather as the ranks
    # determine the order of concatenating the output tensors.
    # As a workaround, we use the xm's rank assignment only when loading
    # the embedding weights.
    xm_tp_rank = xr.global_ordinal()
    with patch(
            "vllm.model_executor.layers.vocab_parallel_embedding."
            "get_tensor_model_parallel_rank",
            return_value=xm_tp_rank):
        model = get_model(vllm_config=self.vllm_config)
    model = model.eval()
    xm.wait_device_ops()
    model = ModelWrapper(model)
    self.model = torch.compile(model,
                               backend="openxla",
                               fullgraph=True,
                               dynamic=False)

make_model_input_from_broadcasted_tensor_dict

make_model_input_from_broadcasted_tensor_dict(
    tensor_dict: Dict[str, Any],
) -> ModelInputForTPU
Source code in vllm/worker/tpu_model_runner.py
def make_model_input_from_broadcasted_tensor_dict(
        self, tensor_dict: Dict[str, Any]) -> ModelInputForTPU:
    model_input = ModelInputForTPU.from_broadcasted_tensor_dict(
        tensor_dict, attn_backend=self.attn_backend)
    return model_input

prepare_model_input

prepare_model_input(
    seq_group_metadata_list: List[SequenceGroupMetadata],
    virtual_engine: int = 0,
    finished_requests_ids: Optional[List[str]] = None,
) -> ModelInputForTPU
Source code in vllm/worker/tpu_model_runner.py
def prepare_model_input(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
    virtual_engine: int = 0,
    finished_requests_ids: Optional[List[str]] = None,
) -> ModelInputForTPU:
    del finished_requests_ids  # Unused.
    assert virtual_engine == 0
    assert len(seq_group_metadata_list) > 0
    # NOTE: We assume that all sequences in the group are all prompts or
    # all decodes.
    is_prompt = seq_group_metadata_list[0].is_prompt
    if is_prompt:
        inputs = self._prepare_prompt(seq_group_metadata_list)
    else:
        inputs = self._prepare_decode(seq_group_metadata_list)
    input_tokens, input_positions, attn_metadata, input_lens = inputs
    padded_batch_size = input_tokens.shape[0]
    t, p, n = self._prepare_sample(seq_group_metadata_list,
                                   padded_batch_size)
    num_samples = _MAX_NUM_SAMPLES if is_prompt else 1

    seq_groups = [
        list(metadata.seq_data.keys())
        for metadata in seq_group_metadata_list
    ]
    return ModelInputForTPU(input_tokens, input_positions, attn_metadata,
                            input_lens, t, p, num_samples, n, seq_groups)

warmup_model

warmup_model(
    kv_caches: List[Tuple[Tensor, Tensor]],
) -> None
Source code in vllm/worker/tpu_model_runner.py
def warmup_model(
    self,
    kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
) -> None:
    # Prefill
    logger.info("Compiling the model with different input shapes...")
    start = time.time()
    for batch_size in [1]:
        seq_len = 16
        while seq_len <= self.model_config.max_model_len:
            self._dummy_run(batch_size,
                            seq_len,
                            kv_caches,
                            exec_mode=ExecutionMode.PREFILL)
            xm.wait_device_ops()
            logger.info("batch_size: %d, seq_len: %d", batch_size, seq_len)
            num_tokens = batch_size * seq_len
            if num_tokens >= self.scheduler_config.max_num_batched_tokens:
                break
            seq_len = seq_len * 2

    end = time.time()
    logger.info("Compilation for prefill done in %.2f s.", end - start)

    # Prefix prefill
    if self.cache_config.enable_prefix_caching:
        logger.info("Compiling the model with different input shapes for "
                    "prefix prefill...")
        start = time.time()
        for batch_size in [1]:
            seq_len = 16
            while seq_len <= self.model_config.max_model_len:
                self._dummy_run(batch_size,
                                seq_len,
                                kv_caches,
                                exec_mode=ExecutionMode.PREFIX_PREFILL)
                xm.wait_device_ops()
                logger.info("batch_size: %d, seq_len: %d", batch_size,
                            seq_len)
                num_tokens = batch_size * seq_len
                if (num_tokens
                        >= self.scheduler_config.max_num_batched_tokens):
                    break
                seq_len = seq_len * 2
        end = time.time()
        logger.info("Compilation for prefix prefill done in %.2f s.",
                    end - start)

    # Decode
    start = time.time()
    seq_len = 1
    batch_size = 8  # Must be in sync with _get_padded_batch_size()
    while True:
        self._dummy_run(batch_size,
                        seq_len,
                        kv_caches,
                        exec_mode=ExecutionMode.DECODE)
        xm.wait_device_ops()
        logger.info("batch_size: %d, seq_len: %d", batch_size, seq_len)

        if batch_size >= self.scheduler_config.max_num_seqs:
            break
        batch_size = batch_size + 16 if batch_size >= 16 else batch_size * 2

    end = time.time()
    logger.info("Compilation for decode done in %.2f s.", end - start)

_apply_top_p

_apply_top_p(logits: Tensor, p: Tensor) -> Tensor
Source code in vllm/worker/tpu_model_runner.py
def _apply_top_p(logits: torch.Tensor, p: torch.Tensor) -> torch.Tensor:
    logits_sorted = torch.sort(logits, dim=-1, descending=True).values
    sorted_cum_probs = torch.cumsum(logits_sorted.softmax(dim=-1), dim=-1)
    cutoff_index = torch.sum(sorted_cum_probs < p, dim=-1, keepdim=True)
    cutoff_logit = torch.gather(logits_sorted, -1, cutoff_index)
    logits = logits.masked_fill_(logits < cutoff_logit, -float("inf"))
    return logits

_get_padded_batch_size

_get_padded_batch_size(batch_size: int) -> int
Source code in vllm/worker/tpu_model_runner.py
def _get_padded_batch_size(batch_size: int) -> int:
    # The GMM Pallas kernel requires num_tokens * topk to be a multiple of 16.
    # To meet this requirement in the simplest way, we set the minimal batch
    # size to 8.
    if batch_size <= 8:
        return 8
    else:
        return ((batch_size + 15) // 16) * 16

_get_padded_prefill_len

_get_padded_prefill_len(x: int) -> int
Source code in vllm/worker/tpu_model_runner.py
def _get_padded_prefill_len(x: int) -> int:
    # NOTE(woosuk): The pallas FlashAttention kernel requires the sequence
    # length to be a multiple of 16. We pad the prompt length to the nearest
    # multiple of 16. This is also good for performance.
    if x <= 16:
        return 16
    return 1 << (x - 1).bit_length()

_make_decode_output

_make_decode_output(
    next_token_ids: List[int], seq_groups: List[List[int]]
) -> SamplerOutput
Source code in vllm/worker/tpu_model_runner.py
def _make_decode_output(
    next_token_ids: List[int],
    seq_groups: List[List[int]],
) -> SamplerOutput:
    zero_logprob = Logprob(0.0)
    sampler_outputs = []
    batch_idx = 0
    for seq_group in seq_groups:
        seq_ids = seq_group
        seq_outputs = []
        for seq_id in seq_ids:
            next_token_id = next_token_ids[batch_idx]
            seq_outputs.append(
                SequenceOutput(seq_id, next_token_id,
                               {next_token_id: zero_logprob}))
            batch_idx += 1
        sampler_outputs.append(CompletionSequenceGroupOutput(
            seq_outputs, None))
    return SamplerOutput(sampler_outputs)