Skip to content

vllm.worker.neuron_model_runner

logger module-attribute

logger = init_logger(__name__)

ModelInputForNeuron dataclass

Bases: ModelRunnerInputBase

Used by the NeuronModelRunner.

Source code in vllm/worker/neuron_model_runner.py
@dataclass(frozen=True)
class ModelInputForNeuron(ModelRunnerInputBase):
    """
    Used by the NeuronModelRunner.
    """
    input_tokens: Optional[torch.Tensor] = None
    input_positions: Optional[torch.Tensor] = None
    input_block_ids: Optional[torch.Tensor] = None
    sampling_metadata: SamplingMetadata = None
    multi_modal_kwargs: BatchedTensorInputs = None
    adapter_ids: Optional[str] = None

    def as_broadcastable_tensor_dict(
            self) -> Dict[str, Union[int, torch.Tensor]]:
        return {
            "input_tokens": self.input_tokens,
            "input_positions": self.input_positions,
            "input_block_ids": self.input_block_ids,
            "sampling_metadata": self.sampling_metadata,
            "multi_modal_kwargs": self.multi_modal_kwargs,
        }

    @classmethod
    def from_broadcasted_tensor_dict(
        cls,
        tensor_dict: Dict[str, Any],
        attn_backend: Optional["AttentionBackend"] = None,
    ) -> "ModelInputForNeuron":
        return ModelInputForNeuron(
            input_tokens=tensor_dict["input_tokens"],
            input_positions=tensor_dict["input_positions"],
            input_block_ids=tensor_dict["input_block_ids"],
            sampling_metadata=tensor_dict["sampling_metadata"],
            multi_modal_kwargs=tensor_dict["multi_modal_kwargs"],
        )

adapter_ids class-attribute instance-attribute

adapter_ids: Optional[str] = None

input_block_ids class-attribute instance-attribute

input_block_ids: Optional[Tensor] = None

input_positions class-attribute instance-attribute

input_positions: Optional[Tensor] = None

input_tokens class-attribute instance-attribute

input_tokens: Optional[Tensor] = None

multi_modal_kwargs class-attribute instance-attribute

multi_modal_kwargs: BatchedTensorInputs = None

sampling_metadata class-attribute instance-attribute

sampling_metadata: SamplingMetadata = None

__init__

__init__(
    input_tokens: Optional[Tensor] = None,
    input_positions: Optional[Tensor] = None,
    input_block_ids: Optional[Tensor] = None,
    sampling_metadata: SamplingMetadata = None,
    multi_modal_kwargs: BatchedTensorInputs = None,
    adapter_ids: Optional[str] = None,
) -> None

as_broadcastable_tensor_dict

as_broadcastable_tensor_dict() -> Dict[
    str, Union[int, Tensor]
]
Source code in vllm/worker/neuron_model_runner.py
def as_broadcastable_tensor_dict(
        self) -> Dict[str, Union[int, torch.Tensor]]:
    return {
        "input_tokens": self.input_tokens,
        "input_positions": self.input_positions,
        "input_block_ids": self.input_block_ids,
        "sampling_metadata": self.sampling_metadata,
        "multi_modal_kwargs": self.multi_modal_kwargs,
    }

from_broadcasted_tensor_dict classmethod

from_broadcasted_tensor_dict(
    tensor_dict: Dict[str, Any],
    attn_backend: Optional[AttentionBackend] = None,
) -> ModelInputForNeuron
Source code in vllm/worker/neuron_model_runner.py
@classmethod
def from_broadcasted_tensor_dict(
    cls,
    tensor_dict: Dict[str, Any],
    attn_backend: Optional["AttentionBackend"] = None,
) -> "ModelInputForNeuron":
    return ModelInputForNeuron(
        input_tokens=tensor_dict["input_tokens"],
        input_positions=tensor_dict["input_positions"],
        input_block_ids=tensor_dict["input_block_ids"],
        sampling_metadata=tensor_dict["sampling_metadata"],
        multi_modal_kwargs=tensor_dict["multi_modal_kwargs"],
    )

NeuronModelRunner

Bases: ModelRunnerBase[ModelInputForNeuron]

A model runner for AWS Neuron hardware

Source code in vllm/worker/neuron_model_runner.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
class NeuronModelRunner(ModelRunnerBase[ModelInputForNeuron]):
    """A model runner for AWS Neuron hardware"""

    # NEURON has an upper limit on the top_k
    _MAX_NEURON_SAMPLING_TOP_K = 256

    def __init__(
        self,
        vllm_config: VllmConfig,
    ):
        ModelRunnerBase.__init__(self, vllm_config)

        if (self.model_config is not None
                and self.model_config.get_sliding_window()):
            logger.warning("Sliding window is not supported on Neuron. "
                           "The model will run without sliding window.")
        self.device_config = (self.device_config if self.device_config
                              is not None else DeviceConfig())
        self.lora_config = vllm_config.lora_config
        self.device = self.device_config.device
        self.pin_memory = is_pin_memory_available()

        # Multi-modal data support
        self.multi_modal_input_mapper = MULTIMODAL_REGISTRY \
            .create_input_mapper(self.model_config)

        # Lazy initialization.
        self.model: nn.Module  # initialize after load_model.

        # Once NEURON_ON_DEVICE_SAMPLING_DISABLED is set to a non-zero value,
        # turn off on-device sampling.
        self._on_device_sampling_disabled = int(
            os.getenv("NEURON_ON_DEVICE_SAMPLING_DISABLED", "0"))

        # NEURON needs to update sampling parameters when request IDs change
        # across batches. This variable stores the previous batch's request IDs
        # to determine if an update is needed.
        self._previous_batch_request_ids: List[str] = []

        if not self._on_device_sampling_disabled:
            self._init_neuron_sampling()

    def _init_neuron_sampling(self) -> None:
        if current_platform.use_transformers_neuronx():
            from transformers_neuronx.config import GenerationConfig
        else:
            from transformers import GenerationConfig
        logger.warning(
            "On-device sampling is turned on in Neuron by default, only "
            "top_k, top_p, and temperature are current supported sampling "
            "parameters. To turn off the on-device sampling, please set "
            "the environment variable NEURON_ON_DEVICE_SAMPLING_DISABLED=1.")
        self.model_config.neuron_sampling_params = GenerationConfig(
            max_length=self.scheduler_config.max_model_len,
            do_sample=True,
            per_batch_line=True,
            top_k=[self._MAX_NEURON_SAMPLING_TOP_K] \
                  * self.scheduler_config.max_num_seqs,
            top_p=[1.0] * self.scheduler_config.max_num_seqs,
            temperature=[1.0] * self.scheduler_config.max_num_seqs,
            dynamic=True,
            global_top_k=self._MAX_NEURON_SAMPLING_TOP_K)

    def load_model(self) -> None:
        self.model = get_neuron_model(self.model_config,
                                      parallel_config=self.parallel_config,
                                      scheduler_config=self.scheduler_config)

    def get_model(self) -> nn.Module:
        return self.model

    def _prepare_prompt(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, List[int],
               BatchedTensorInputs]:
        assert len(seq_group_metadata_list) > 0
        input_tokens: List[List[int]] = []
        input_positions: List[List[int]] = []
        input_block_ids: List[int] = []

        seq_lens: List[int] = []
        multi_modal_kwargs_list: List[MultiModalKwargs] = []
        for seq_group_metadata in seq_group_metadata_list:
            assert seq_group_metadata.is_prompt
            seq_ids = list(seq_group_metadata.seq_data.keys())
            assert len(seq_ids) == 1
            seq_id = seq_ids[0]

            seq_data = seq_group_metadata.seq_data[seq_id]
            prompt_tokens = seq_data.get_token_ids()
            seq_len = len(prompt_tokens)
            seq_lens.append(seq_len)

            input_tokens.append(prompt_tokens)
            input_positions.append(list(range(seq_len)))

            assert seq_group_metadata.block_tables is not None
            block_table = seq_group_metadata.block_tables[seq_id]
            assert len(block_table) == 1
            input_block_ids.append(block_table[0])

            mm_kwargs = seq_group_metadata.multi_modal_data
            if mm_kwargs:
                mm_kwargs = self.process_multi_modal_data_neuron(mm_kwargs)
                multi_modal_kwargs_list.append(mm_kwargs)

        max_seq_len = max(seq_lens)
        assert max_seq_len > 0
        input_tokens = make_tensor_with_pad(input_tokens,
                                            pad=0,
                                            max_len=max_seq_len,
                                            dtype=torch.long,
                                            device=self.device)
        input_positions = make_tensor_with_pad(input_positions,
                                               pad=0,
                                               max_len=max_seq_len,
                                               dtype=torch.long,
                                               device=self.device)
        input_block_ids = torch.tensor(input_block_ids,
                                       dtype=torch.long,
                                       device=self.device)

        multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)

        return (input_tokens, input_positions, input_block_ids, seq_lens,
                multi_modal_kwargs)

    def _prepare_decode(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        assert len(seq_group_metadata_list) > 0
        input_tokens: List[List[int]] = []
        input_positions: List[List[int]] = []
        input_block_ids: List[int] = []
        context_lens: List[int] = []

        for seq_group_metadata in seq_group_metadata_list:
            assert not seq_group_metadata.is_prompt

            seq_ids = list(seq_group_metadata.seq_data.keys())

            for seq_id in seq_ids:
                seq_data = seq_group_metadata.seq_data[seq_id]
                generation_token = seq_data.get_last_token_id()
                input_tokens.append([generation_token])

                seq_len = seq_data.get_len()
                position = seq_len - 1
                input_positions.append([position])
                context_lens.append(seq_len)

                assert seq_group_metadata.block_tables is not None
                block_table = seq_group_metadata.block_tables[seq_id]
                assert len(block_table) == 1
                input_block_ids.append(block_table[0])

        input_tokens = make_tensor_with_pad(input_tokens,
                                            pad=0,
                                            max_len=1,
                                            dtype=torch.long,
                                            device=self.device)
        input_positions = make_tensor_with_pad(input_positions,
                                               pad=0,
                                               max_len=1,
                                               dtype=torch.long,
                                               device=self.device)
        context_lens = torch.tensor(context_lens,
                                    dtype=torch.int,
                                    device=self.device)
        input_block_ids = torch.tensor(input_block_ids,
                                       dtype=torch.long,
                                       device=self.device)

        return input_tokens, input_positions, input_block_ids

    def make_model_input_from_broadcasted_tensor_dict(
            self, tensor_dict: Dict[str, Any]) -> ModelInputForNeuron:
        return ModelInputForNeuron.from_broadcasted_tensor_dict(tensor_dict)

    def prepare_model_input(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        virtual_engine: int = 0,
        finished_requests_ids: Optional[List[str]] = None
    ) -> ModelInputForNeuron:
        multi_modal_kwargs = None
        # NOTE: We assume that all sequences in the group are all prompts or
        # all decodes.
        is_prompt = seq_group_metadata_list[0].is_prompt
        # Prepare input tensors.
        if is_prompt:
            (input_tokens, input_positions, input_block_ids, seq_lens,
             multi_modal_kwargs
             ) = self._prepare_prompt(seq_group_metadata_list)
        else:
            (input_tokens, input_positions,
             input_block_ids) = self._prepare_decode(seq_group_metadata_list)
            seq_lens = None

        if not self._on_device_sampling_disabled:
            for seq_group_metadata in seq_group_metadata_list:
                sampling_params = seq_group_metadata.sampling_params
                top_k, top_p, temperature = (
                    self._convert_to_neuron_sampling_params(sampling_params))
                sampling_params.top_k = top_k
                sampling_params.top_p = top_p
                sampling_params.temperature = temperature

        # we need multi_modal_data for later tokens as well
        multi_modal_kwargs_list: List[MultiModalKwargs] = []
        for seq_group_metadata in seq_group_metadata_list:
            mm_data = seq_group_metadata.multi_modal_data
            if mm_data:
                multi_modal_kwargs_list.append(mm_data)
        multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)

        sampling_metadata = SamplingMetadata.prepare(
            seq_group_metadata_list,
            seq_lens,
            # query_lens is not needed if chunked prefill is not
            # supported. Since neuron worker doesn't support chunked prefill
            # just use seq_lens instead.
            seq_lens,
            self.device,
            self.pin_memory,
            generators=self.get_generators(finished_requests_ids))

        if current_platform.use_transformers_neuronx(
        ) and not self._on_device_sampling_disabled:
            # Once the request IDs are changed in current iteration, we will
            # update the on-device sampling parameters.
            current_batch_request_ids = [
                seq_group_meta_data.request_id
                for seq_group_meta_data in seq_group_metadata_list
            ]
            if current_batch_request_ids != self._previous_batch_request_ids:
                self._update_neuron_sampling_params(seq_group_metadata_list)
                self._previous_batch_request_ids = current_batch_request_ids

        return ModelInputForNeuron(input_tokens=input_tokens,
                                   input_positions=input_positions,
                                   input_block_ids=input_block_ids,
                                   sampling_metadata=sampling_metadata,
                                   multi_modal_kwargs=multi_modal_kwargs)

    def _update_neuron_sampling_params(
            self, seq_group_metadata_list: List[SequenceGroupMetadata]):
        # Update Neuron sampling parameters (GenerationConfig in Neuron)
        current_sampling_params = self.model_config.neuron_sampling_params
        assert current_sampling_params is not None, (
            f"Failed to update sampling_params, "
            f"current sampling params is {current_sampling_params}")

        is_update_needed = False

        top_k = current_sampling_params.top_k
        top_p = current_sampling_params.top_p
        temperature = current_sampling_params.temperature

        # The index of a sequence's sampling parameters in neuron is equal to
        # its index in `input_block_ids`.
        for seq_group_metadata in seq_group_metadata_list:
            seq_ids = list(seq_group_metadata.seq_data.keys())
            sampling_params = seq_group_metadata.sampling_params

            seq_group_top_k = sampling_params.top_k
            seq_group_top_p = sampling_params.top_p
            seq_group_temperature = sampling_params.temperature

            for seq_id in seq_ids:
                index = seq_group_metadata.block_tables[seq_id][0]
                if (top_k[index] != seq_group_top_k
                        or top_p[index] != seq_group_top_p
                        or temperature[index] != seq_group_temperature):
                    is_update_needed = True

                top_k[index] = seq_group_top_k
                top_p[index] = seq_group_top_p
                temperature[index] = seq_group_temperature

        # update_generation_config is only available in transformers-neuronx
        if is_update_needed and current_platform.use_transformers_neuronx():
            self.model.model.update_generation_config(current_sampling_params)

    def _convert_to_neuron_sampling_params(
            self, sampling_params: SamplingParams) -> Tuple[int, float, float]:
        # Returns the top_k, top_p and temperature parameters for neuron.
        top_k = sampling_params.top_k
        top_p = sampling_params.top_p
        temperature = sampling_params.temperature

        if temperature == 0.0:
            # Enable greedy sampling on zero temperature
            return (1, 1.0, 1.0)
        if top_k < 1 or top_k > self._MAX_NEURON_SAMPLING_TOP_K:
            top_k = self._MAX_NEURON_SAMPLING_TOP_K

        return (top_k, top_p, temperature)

    @torch.inference_mode()
    def execute_model(
        self,
        model_input: ModelInputForNeuron,
        kv_caches: Optional[List[torch.Tensor]] = None,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        num_steps: int = 1,
    ) -> Optional[List[SamplerOutput]]:
        if num_steps > 1:
            raise ValueError(
                "NeuronModelRunner does not support multi-step execution.")

        # extract top_k, top_p and temperature from model_input for neuron
        # forward call
        sampling_params = (torch.tensor([[
            seq_group.sampling_params.top_k, seq_group.sampling_params.top_p,
            seq_group.sampling_params.temperature
        ] for seq_group in model_input.sampling_metadata.seq_groups]))

        if current_platform.use_neuronx_distributed():
            hidden_states = self.model(
                input_ids=model_input.input_tokens,
                positions=model_input.input_positions,
                input_block_ids=model_input.input_block_ids,
                sampling_params=sampling_params,
                adapter_ids=model_input.adapter_ids,
                **MultiModalKwargs.as_kwargs(
                    model_input.multi_modal_kwargs or {},
                    device=self.device,
                ),
            )
        elif current_platform.use_transformers_neuronx():
            # [TODO] validate on-device sampling
            # The model signature may need change for on-device sampling
            hidden_states = self.model(
                input_ids=model_input.input_tokens,
                positions=model_input.input_positions,
                input_block_ids=model_input.input_block_ids,
                **MultiModalKwargs.as_kwargs(
                    model_input.multi_modal_kwargs or {},
                    device=self.device,
                ),
            )

        # Compute the logits only if the on-device sampling is turned off as
        # on-device sampling outputs the token ids.
        if self._on_device_sampling_disabled:
            logits = self.model.compute_logits(hidden_states,
                                               model_input.sampling_metadata)
        else:
            logits = hidden_states

        # Sample the next token.
        output = self.model.sample(
            logits=logits,
            sampling_metadata=model_input.sampling_metadata,
        )
        return [output]

    @property
    def vocab_size(self) -> int:
        return self.model_config.get_vocab_size()

    def process_multi_modal_data_neuron(self, mm_data):
        # this is a no-op for NeuronModelRunner
        return mm_data

    def remove_all_loras(self):
        raise NotImplementedError(
            "LoRAs are not supported for Transformers NeuronX framework")

    def set_active_loras(self, lora_requests: Set[LoRARequest],
                         lora_mapping: LoRAMapping) -> None:
        raise NotImplementedError(
            "LoRAs are not supported for Transformers NeuronX framework")

    def add_lora(self, lora_request: LoRARequest):
        raise NotImplementedError(
            "LoRAs are not supported for Transformers NeuronX framework")

    def remove_lora(self, lora_id: int) -> bool:
        raise NotImplementedError(
            "LoRAs are not supported for Transformers NeuronX framework")

    def pin_lora(self, lora_id: int) -> bool:
        raise NotImplementedError(
            "LoRAs are not supported for Transformers NeuronX framework")

    def list_loras(self) -> Set[int]:
        raise NotImplementedError(
            "LoRAs are not supported for Transformers NeuronX framework")

_MAX_NEURON_SAMPLING_TOP_K class-attribute instance-attribute

_MAX_NEURON_SAMPLING_TOP_K = 256

_on_device_sampling_disabled instance-attribute

_on_device_sampling_disabled = int(
    getenv("NEURON_ON_DEVICE_SAMPLING_DISABLED", "0")
)

_previous_batch_request_ids instance-attribute

_previous_batch_request_ids: List[str] = []

device instance-attribute

device = device

device_config instance-attribute

device_config = (
    device_config
    if device_config is not None
    else DeviceConfig()
)

lora_config instance-attribute

lora_config = lora_config

model instance-attribute

model: Module

multi_modal_input_mapper instance-attribute

multi_modal_input_mapper = create_input_mapper(model_config)

pin_memory instance-attribute

pin_memory = is_pin_memory_available()

vocab_size property

vocab_size: int

__init__

__init__(vllm_config: VllmConfig)
Source code in vllm/worker/neuron_model_runner.py
def __init__(
    self,
    vllm_config: VllmConfig,
):
    ModelRunnerBase.__init__(self, vllm_config)

    if (self.model_config is not None
            and self.model_config.get_sliding_window()):
        logger.warning("Sliding window is not supported on Neuron. "
                       "The model will run without sliding window.")
    self.device_config = (self.device_config if self.device_config
                          is not None else DeviceConfig())
    self.lora_config = vllm_config.lora_config
    self.device = self.device_config.device
    self.pin_memory = is_pin_memory_available()

    # Multi-modal data support
    self.multi_modal_input_mapper = MULTIMODAL_REGISTRY \
        .create_input_mapper(self.model_config)

    # Lazy initialization.
    self.model: nn.Module  # initialize after load_model.

    # Once NEURON_ON_DEVICE_SAMPLING_DISABLED is set to a non-zero value,
    # turn off on-device sampling.
    self._on_device_sampling_disabled = int(
        os.getenv("NEURON_ON_DEVICE_SAMPLING_DISABLED", "0"))

    # NEURON needs to update sampling parameters when request IDs change
    # across batches. This variable stores the previous batch's request IDs
    # to determine if an update is needed.
    self._previous_batch_request_ids: List[str] = []

    if not self._on_device_sampling_disabled:
        self._init_neuron_sampling()

_convert_to_neuron_sampling_params

_convert_to_neuron_sampling_params(
    sampling_params: SamplingParams,
) -> Tuple[int, float, float]
Source code in vllm/worker/neuron_model_runner.py
def _convert_to_neuron_sampling_params(
        self, sampling_params: SamplingParams) -> Tuple[int, float, float]:
    # Returns the top_k, top_p and temperature parameters for neuron.
    top_k = sampling_params.top_k
    top_p = sampling_params.top_p
    temperature = sampling_params.temperature

    if temperature == 0.0:
        # Enable greedy sampling on zero temperature
        return (1, 1.0, 1.0)
    if top_k < 1 or top_k > self._MAX_NEURON_SAMPLING_TOP_K:
        top_k = self._MAX_NEURON_SAMPLING_TOP_K

    return (top_k, top_p, temperature)

_init_neuron_sampling

_init_neuron_sampling() -> None
Source code in vllm/worker/neuron_model_runner.py
def _init_neuron_sampling(self) -> None:
    if current_platform.use_transformers_neuronx():
        from transformers_neuronx.config import GenerationConfig
    else:
        from transformers import GenerationConfig
    logger.warning(
        "On-device sampling is turned on in Neuron by default, only "
        "top_k, top_p, and temperature are current supported sampling "
        "parameters. To turn off the on-device sampling, please set "
        "the environment variable NEURON_ON_DEVICE_SAMPLING_DISABLED=1.")
    self.model_config.neuron_sampling_params = GenerationConfig(
        max_length=self.scheduler_config.max_model_len,
        do_sample=True,
        per_batch_line=True,
        top_k=[self._MAX_NEURON_SAMPLING_TOP_K] \
              * self.scheduler_config.max_num_seqs,
        top_p=[1.0] * self.scheduler_config.max_num_seqs,
        temperature=[1.0] * self.scheduler_config.max_num_seqs,
        dynamic=True,
        global_top_k=self._MAX_NEURON_SAMPLING_TOP_K)

_prepare_decode

_prepare_decode(
    seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[Tensor, Tensor, Tensor]
Source code in vllm/worker/neuron_model_runner.py
def _prepare_decode(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    assert len(seq_group_metadata_list) > 0
    input_tokens: List[List[int]] = []
    input_positions: List[List[int]] = []
    input_block_ids: List[int] = []
    context_lens: List[int] = []

    for seq_group_metadata in seq_group_metadata_list:
        assert not seq_group_metadata.is_prompt

        seq_ids = list(seq_group_metadata.seq_data.keys())

        for seq_id in seq_ids:
            seq_data = seq_group_metadata.seq_data[seq_id]
            generation_token = seq_data.get_last_token_id()
            input_tokens.append([generation_token])

            seq_len = seq_data.get_len()
            position = seq_len - 1
            input_positions.append([position])
            context_lens.append(seq_len)

            assert seq_group_metadata.block_tables is not None
            block_table = seq_group_metadata.block_tables[seq_id]
            assert len(block_table) == 1
            input_block_ids.append(block_table[0])

    input_tokens = make_tensor_with_pad(input_tokens,
                                        pad=0,
                                        max_len=1,
                                        dtype=torch.long,
                                        device=self.device)
    input_positions = make_tensor_with_pad(input_positions,
                                           pad=0,
                                           max_len=1,
                                           dtype=torch.long,
                                           device=self.device)
    context_lens = torch.tensor(context_lens,
                                dtype=torch.int,
                                device=self.device)
    input_block_ids = torch.tensor(input_block_ids,
                                   dtype=torch.long,
                                   device=self.device)

    return input_tokens, input_positions, input_block_ids

_prepare_prompt

_prepare_prompt(
    seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[
    Tensor, Tensor, Tensor, List[int], BatchedTensorInputs
]
Source code in vllm/worker/neuron_model_runner.py
def _prepare_prompt(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, List[int],
           BatchedTensorInputs]:
    assert len(seq_group_metadata_list) > 0
    input_tokens: List[List[int]] = []
    input_positions: List[List[int]] = []
    input_block_ids: List[int] = []

    seq_lens: List[int] = []
    multi_modal_kwargs_list: List[MultiModalKwargs] = []
    for seq_group_metadata in seq_group_metadata_list:
        assert seq_group_metadata.is_prompt
        seq_ids = list(seq_group_metadata.seq_data.keys())
        assert len(seq_ids) == 1
        seq_id = seq_ids[0]

        seq_data = seq_group_metadata.seq_data[seq_id]
        prompt_tokens = seq_data.get_token_ids()
        seq_len = len(prompt_tokens)
        seq_lens.append(seq_len)

        input_tokens.append(prompt_tokens)
        input_positions.append(list(range(seq_len)))

        assert seq_group_metadata.block_tables is not None
        block_table = seq_group_metadata.block_tables[seq_id]
        assert len(block_table) == 1
        input_block_ids.append(block_table[0])

        mm_kwargs = seq_group_metadata.multi_modal_data
        if mm_kwargs:
            mm_kwargs = self.process_multi_modal_data_neuron(mm_kwargs)
            multi_modal_kwargs_list.append(mm_kwargs)

    max_seq_len = max(seq_lens)
    assert max_seq_len > 0
    input_tokens = make_tensor_with_pad(input_tokens,
                                        pad=0,
                                        max_len=max_seq_len,
                                        dtype=torch.long,
                                        device=self.device)
    input_positions = make_tensor_with_pad(input_positions,
                                           pad=0,
                                           max_len=max_seq_len,
                                           dtype=torch.long,
                                           device=self.device)
    input_block_ids = torch.tensor(input_block_ids,
                                   dtype=torch.long,
                                   device=self.device)

    multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)

    return (input_tokens, input_positions, input_block_ids, seq_lens,
            multi_modal_kwargs)

_update_neuron_sampling_params

_update_neuron_sampling_params(
    seq_group_metadata_list: List[SequenceGroupMetadata],
)
Source code in vllm/worker/neuron_model_runner.py
def _update_neuron_sampling_params(
        self, seq_group_metadata_list: List[SequenceGroupMetadata]):
    # Update Neuron sampling parameters (GenerationConfig in Neuron)
    current_sampling_params = self.model_config.neuron_sampling_params
    assert current_sampling_params is not None, (
        f"Failed to update sampling_params, "
        f"current sampling params is {current_sampling_params}")

    is_update_needed = False

    top_k = current_sampling_params.top_k
    top_p = current_sampling_params.top_p
    temperature = current_sampling_params.temperature

    # The index of a sequence's sampling parameters in neuron is equal to
    # its index in `input_block_ids`.
    for seq_group_metadata in seq_group_metadata_list:
        seq_ids = list(seq_group_metadata.seq_data.keys())
        sampling_params = seq_group_metadata.sampling_params

        seq_group_top_k = sampling_params.top_k
        seq_group_top_p = sampling_params.top_p
        seq_group_temperature = sampling_params.temperature

        for seq_id in seq_ids:
            index = seq_group_metadata.block_tables[seq_id][0]
            if (top_k[index] != seq_group_top_k
                    or top_p[index] != seq_group_top_p
                    or temperature[index] != seq_group_temperature):
                is_update_needed = True

            top_k[index] = seq_group_top_k
            top_p[index] = seq_group_top_p
            temperature[index] = seq_group_temperature

    # update_generation_config is only available in transformers-neuronx
    if is_update_needed and current_platform.use_transformers_neuronx():
        self.model.model.update_generation_config(current_sampling_params)

add_lora

add_lora(lora_request: LoRARequest)
Source code in vllm/worker/neuron_model_runner.py
def add_lora(self, lora_request: LoRARequest):
    raise NotImplementedError(
        "LoRAs are not supported for Transformers NeuronX framework")

execute_model

execute_model(
    model_input: ModelInputForNeuron,
    kv_caches: Optional[List[Tensor]] = None,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    num_steps: int = 1,
) -> Optional[List[SamplerOutput]]
Source code in vllm/worker/neuron_model_runner.py
@torch.inference_mode()
def execute_model(
    self,
    model_input: ModelInputForNeuron,
    kv_caches: Optional[List[torch.Tensor]] = None,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    num_steps: int = 1,
) -> Optional[List[SamplerOutput]]:
    if num_steps > 1:
        raise ValueError(
            "NeuronModelRunner does not support multi-step execution.")

    # extract top_k, top_p and temperature from model_input for neuron
    # forward call
    sampling_params = (torch.tensor([[
        seq_group.sampling_params.top_k, seq_group.sampling_params.top_p,
        seq_group.sampling_params.temperature
    ] for seq_group in model_input.sampling_metadata.seq_groups]))

    if current_platform.use_neuronx_distributed():
        hidden_states = self.model(
            input_ids=model_input.input_tokens,
            positions=model_input.input_positions,
            input_block_ids=model_input.input_block_ids,
            sampling_params=sampling_params,
            adapter_ids=model_input.adapter_ids,
            **MultiModalKwargs.as_kwargs(
                model_input.multi_modal_kwargs or {},
                device=self.device,
            ),
        )
    elif current_platform.use_transformers_neuronx():
        # [TODO] validate on-device sampling
        # The model signature may need change for on-device sampling
        hidden_states = self.model(
            input_ids=model_input.input_tokens,
            positions=model_input.input_positions,
            input_block_ids=model_input.input_block_ids,
            **MultiModalKwargs.as_kwargs(
                model_input.multi_modal_kwargs or {},
                device=self.device,
            ),
        )

    # Compute the logits only if the on-device sampling is turned off as
    # on-device sampling outputs the token ids.
    if self._on_device_sampling_disabled:
        logits = self.model.compute_logits(hidden_states,
                                           model_input.sampling_metadata)
    else:
        logits = hidden_states

    # Sample the next token.
    output = self.model.sample(
        logits=logits,
        sampling_metadata=model_input.sampling_metadata,
    )
    return [output]

get_model

get_model() -> Module
Source code in vllm/worker/neuron_model_runner.py
def get_model(self) -> nn.Module:
    return self.model

list_loras

list_loras() -> Set[int]
Source code in vllm/worker/neuron_model_runner.py
def list_loras(self) -> Set[int]:
    raise NotImplementedError(
        "LoRAs are not supported for Transformers NeuronX framework")

load_model

load_model() -> None
Source code in vllm/worker/neuron_model_runner.py
def load_model(self) -> None:
    self.model = get_neuron_model(self.model_config,
                                  parallel_config=self.parallel_config,
                                  scheduler_config=self.scheduler_config)

make_model_input_from_broadcasted_tensor_dict

make_model_input_from_broadcasted_tensor_dict(
    tensor_dict: Dict[str, Any],
) -> ModelInputForNeuron
Source code in vllm/worker/neuron_model_runner.py
def make_model_input_from_broadcasted_tensor_dict(
        self, tensor_dict: Dict[str, Any]) -> ModelInputForNeuron:
    return ModelInputForNeuron.from_broadcasted_tensor_dict(tensor_dict)

pin_lora

pin_lora(lora_id: int) -> bool
Source code in vllm/worker/neuron_model_runner.py
def pin_lora(self, lora_id: int) -> bool:
    raise NotImplementedError(
        "LoRAs are not supported for Transformers NeuronX framework")

prepare_model_input

prepare_model_input(
    seq_group_metadata_list: List[SequenceGroupMetadata],
    virtual_engine: int = 0,
    finished_requests_ids: Optional[List[str]] = None,
) -> ModelInputForNeuron
Source code in vllm/worker/neuron_model_runner.py
def prepare_model_input(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
    virtual_engine: int = 0,
    finished_requests_ids: Optional[List[str]] = None
) -> ModelInputForNeuron:
    multi_modal_kwargs = None
    # NOTE: We assume that all sequences in the group are all prompts or
    # all decodes.
    is_prompt = seq_group_metadata_list[0].is_prompt
    # Prepare input tensors.
    if is_prompt:
        (input_tokens, input_positions, input_block_ids, seq_lens,
         multi_modal_kwargs
         ) = self._prepare_prompt(seq_group_metadata_list)
    else:
        (input_tokens, input_positions,
         input_block_ids) = self._prepare_decode(seq_group_metadata_list)
        seq_lens = None

    if not self._on_device_sampling_disabled:
        for seq_group_metadata in seq_group_metadata_list:
            sampling_params = seq_group_metadata.sampling_params
            top_k, top_p, temperature = (
                self._convert_to_neuron_sampling_params(sampling_params))
            sampling_params.top_k = top_k
            sampling_params.top_p = top_p
            sampling_params.temperature = temperature

    # we need multi_modal_data for later tokens as well
    multi_modal_kwargs_list: List[MultiModalKwargs] = []
    for seq_group_metadata in seq_group_metadata_list:
        mm_data = seq_group_metadata.multi_modal_data
        if mm_data:
            multi_modal_kwargs_list.append(mm_data)
    multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)

    sampling_metadata = SamplingMetadata.prepare(
        seq_group_metadata_list,
        seq_lens,
        # query_lens is not needed if chunked prefill is not
        # supported. Since neuron worker doesn't support chunked prefill
        # just use seq_lens instead.
        seq_lens,
        self.device,
        self.pin_memory,
        generators=self.get_generators(finished_requests_ids))

    if current_platform.use_transformers_neuronx(
    ) and not self._on_device_sampling_disabled:
        # Once the request IDs are changed in current iteration, we will
        # update the on-device sampling parameters.
        current_batch_request_ids = [
            seq_group_meta_data.request_id
            for seq_group_meta_data in seq_group_metadata_list
        ]
        if current_batch_request_ids != self._previous_batch_request_ids:
            self._update_neuron_sampling_params(seq_group_metadata_list)
            self._previous_batch_request_ids = current_batch_request_ids

    return ModelInputForNeuron(input_tokens=input_tokens,
                               input_positions=input_positions,
                               input_block_ids=input_block_ids,
                               sampling_metadata=sampling_metadata,
                               multi_modal_kwargs=multi_modal_kwargs)

process_multi_modal_data_neuron

process_multi_modal_data_neuron(mm_data)
Source code in vllm/worker/neuron_model_runner.py
def process_multi_modal_data_neuron(self, mm_data):
    # this is a no-op for NeuronModelRunner
    return mm_data

remove_all_loras

remove_all_loras()
Source code in vllm/worker/neuron_model_runner.py
def remove_all_loras(self):
    raise NotImplementedError(
        "LoRAs are not supported for Transformers NeuronX framework")

remove_lora

remove_lora(lora_id: int) -> bool
Source code in vllm/worker/neuron_model_runner.py
def remove_lora(self, lora_id: int) -> bool:
    raise NotImplementedError(
        "LoRAs are not supported for Transformers NeuronX framework")

set_active_loras

set_active_loras(
    lora_requests: Set[LoRARequest],
    lora_mapping: LoRAMapping,
) -> None
Source code in vllm/worker/neuron_model_runner.py
def set_active_loras(self, lora_requests: Set[LoRARequest],
                     lora_mapping: LoRAMapping) -> None:
    raise NotImplementedError(
        "LoRAs are not supported for Transformers NeuronX framework")