vllm.worker.cpu_worker
A CPU worker class.
CPUCacheEngine
¶
Manages the KV cache for CPU backend.
This class is responsible for initializing and managing CPU KV caches. It also provides methods for performing KV cache operations, such as copying.
Source code in vllm/worker/cpu_worker.py
attn_backend
instance-attribute
¶
attn_backend = get_attn_backend(
get_head_size(),
dtype,
cache_dtype,
block_size,
is_attention_free,
use_mla=use_mla,
)
__init__
¶
__init__(
cache_config: CacheConfig,
model_config: ModelConfig,
parallel_config: ParallelConfig,
device_config: DeviceConfig,
) -> None
Source code in vllm/worker/cpu_worker.py
_allocate_kv_cache
¶
Allocates KV cache on CPU.
Source code in vllm/worker/cpu_worker.py
get_cache_block_size
staticmethod
¶
get_cache_block_size(
cache_config: CacheConfig,
model_config: ModelConfig,
parallel_config: ParallelConfig,
) -> int
Source code in vllm/worker/cpu_worker.py
get_kv_cache_dtype
staticmethod
¶
get_kv_cache_dtype(
cache_config: CacheConfig, model_config: ModelConfig
)
Source code in vllm/worker/cpu_worker.py
CPUWorker
¶
Bases: LocalOrDistributedWorkerBase
A worker class that executes (a partition of) the model on a CPU socket.
Each worker is associated with a single CPU socket. The worker is responsible for maintaining the KV cache and executing the model on the CPU. In case of distributed inference, each worker is assigned a partition of the model.
Source code in vllm/worker/cpu_worker.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|
model_runner
instance-attribute
¶
model_runner: CPUModelRunnerBase = ModelRunnerClass(
vllm_config=vllm_config,
kv_cache_dtype=kv_cache_dtype,
is_driver_worker=is_driver_worker,
**speculative_args,
)
profiler
instance-attribute
¶
profiler = profile(
activities=[CPU],
with_stack=True,
on_trace_ready=tensorboard_trace_handler(
torch_profiler_trace_dir, use_gzip=True
),
)
__init__
¶
__init__(
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
kv_cache_dtype: Optional[str] = "auto",
is_driver_worker: bool = False,
model_runner_cls: Optional[Type[CPUModelRunner]] = None,
) -> None
Source code in vllm/worker/cpu_worker.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
_init_cache_engine
¶
Source code in vllm/worker/cpu_worker.py
_validate_num_cpu_blocks
¶
_validate_num_cpu_blocks(num_cpu_blocks: int) -> None
Raise errors if the num_cpu_blocks is invalid.
Source code in vllm/worker/cpu_worker.py
add_lora
¶
add_lora(lora_request: LoRARequest) -> bool
determine_num_available_blocks
¶
Determine the number of blocks available for the KV cache.
This determines how many KV blocks can fit into the configured CPU KV cache space.
Note that since vLLM assumes a block resides on GPU if it can be modified, we return num_gpu_blocks=num_cpu_blocks and num_cpu_blocks=0. This allows us to reuse the scheduler of vLLM without generalizing it to different devices.
Source code in vllm/worker/cpu_worker.py
execute_worker
¶
execute_worker(worker_input: WorkerInput) -> None
Source code in vllm/worker/cpu_worker.py
get_cache_block_size_bytes
¶
get_cache_block_size_bytes() -> int
Return the size in bytes of a single KV cache block.
get_cpus_id_binding_based_on_numa_nodes
¶
get_cpus_id_binding_based_on_numa_nodes() -> str
Return CPUs id binding based on NUMA nodes.
Source code in vllm/worker/cpu_worker.py
init_device
¶
Source code in vllm/worker/cpu_worker.py
init_distributed_environment
¶
Initialize the distributed environment.
Source code in vllm/worker/cpu_worker.py
initialize_cache
¶
Initialize the KV cache. Currently, swappable CPU memory is not supported.
Since this worker does not support GPUs, we use the num_gpu_blocks to determine how many non-swappable CPU blocks to allocate.
Source code in vllm/worker/cpu_worker.py
list_loras
¶
load_model
¶
pin_lora
¶
prepare_worker_input
¶
prepare_worker_input(
execute_model_req: ExecuteModelRequest,
) -> WorkerInput