vllm.worker.neuron_worker
A Neuron worker class.
NeuronWorker
¶
Bases: LocalOrDistributedWorkerBase
A worker class that executes the model on a group of neuron cores.
Source code in vllm/worker/neuron_worker.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
__init__
¶
__init__(
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
) -> None
Source code in vllm/worker/neuron_worker.py
determine_num_available_blocks
¶
Determine the number of available KV blocks.
Swapping is not yet supported, so always return num_cpu_blocks=0.
We configure num_gpu_blocks to be equal to max_num_seqs.
Source code in vllm/worker/neuron_worker.py
execute_worker
¶
execute_worker(worker_input: WorkerInput) -> None
get_cache_block_size_bytes
¶
get_cache_block_size_bytes() -> int
Determine the size in bytes of a cache block.
This is required for speculative decoding; it is not yet implemented.
get_neuronx_distributed_model_runner
¶
Source code in vllm/worker/neuron_worker.py
get_tnx_model_runner
¶
Source code in vllm/worker/neuron_worker.py
init_device
¶
init_distributed_environment
¶
Neuron uses transformers-neuronx for tensor parallelism.
vLLM still needs the environment initialized when TP/PP > 1
Source code in vllm/worker/neuron_worker.py
initialize_cache
¶
Initialize the KV cache.
Source code in vllm/worker/neuron_worker.py
list_loras
¶
load_model
¶
pin_lora
¶
Source code in vllm/worker/neuron_worker.py
prepare_worker_input
¶
prepare_worker_input(
execute_model_req: ExecuteModelRequest,
) -> WorkerInput