Skip to content

vllm.worker.enc_dec_model_runner

LORA_WARMUP_RANK module-attribute

LORA_WARMUP_RANK = 8

logger module-attribute

logger = init_logger(__name__)

EncoderDecoderModelInput dataclass

Bases: ModelInputForGPUWithSamplingMetadata

Used by the EncoderDecoderModelRunner.

Source code in vllm/worker/enc_dec_model_runner.py
@dataclasses.dataclass(frozen=True)
class EncoderDecoderModelInput(ModelInputForGPUWithSamplingMetadata):
    """
    Used by the EncoderDecoderModelRunner.
    """
    encoder_input_tokens: Optional[torch.Tensor] = None
    encoder_input_positions: Optional[torch.Tensor] = None

    def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
        tensor_dict = {
            "input_tokens": self.input_tokens,
            "inputs_embeds": self.inputs_embeds,
            "input_positions": self.input_positions,
            "encoder_input_tokens": self.encoder_input_tokens,
            "encoder_input_positions": self.encoder_input_positions,
            "virtual_engine": self.virtual_engine,
            "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
            "finished_requests_ids": self.finished_requests_ids,
            "multi_modal_kwargs": self.multi_modal_kwargs,
        }
        _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
        _add_sampling_metadata_broadcastable_dict(tensor_dict,
                                                  self.sampling_metadata)
        return tensor_dict

    @classmethod
    def from_broadcasted_tensor_dict(
        cls,
        tensor_dict: Dict[str, Any],
        attn_backend: Optional["AttentionBackend"] = None,
    ) -> "EncoderDecoderModelInput":
        return cast(
            EncoderDecoderModelInput,
            super().from_broadcasted_tensor_dict(tensor_dict, attn_backend))

encoder_input_positions class-attribute instance-attribute

encoder_input_positions: Optional[Tensor] = None

encoder_input_tokens class-attribute instance-attribute

encoder_input_tokens: Optional[Tensor] = None

__init__

__init__(
    input_tokens: Optional[Tensor] = None,
    inputs_embeds: Optional[Tensor] = None,
    input_positions: Optional[Tensor] = None,
    token_types: Optional[Tensor] = None,
    seq_lens: Optional[List[int]] = None,
    query_lens: Optional[List[int]] = None,
    lora_mapping: Optional[LoRAMapping] = None,
    lora_requests: Optional[Set[LoRARequest]] = None,
    attn_metadata: Optional[AttentionMetadata] = None,
    prompt_adapter_mapping: Optional[
        PromptAdapterMapping
    ] = None,
    prompt_adapter_requests: Optional[
        Set[PromptAdapterRequest]
    ] = None,
    multi_modal_kwargs: Optional[
        BatchedTensorInputs
    ] = None,
    request_ids_to_seq_ids: Optional[
        Dict[str, List[int]]
    ] = None,
    finished_requests_ids: Optional[List[str]] = None,
    virtual_engine: int = 0,
    async_callback: Optional[Callable] = None,
    scheduler_outputs: Optional[SchedulerOutputs] = None,
    previous_hidden_states: Optional[Tensor] = None,
    sampling_metadata: Optional[SamplingMetadata] = None,
    is_prompt: Optional[bool] = None,
    encoder_input_tokens: Optional[Tensor] = None,
    encoder_input_positions: Optional[Tensor] = None,
) -> None

as_broadcastable_tensor_dict

as_broadcastable_tensor_dict() -> Dict[str, Any]
Source code in vllm/worker/enc_dec_model_runner.py
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
    tensor_dict = {
        "input_tokens": self.input_tokens,
        "inputs_embeds": self.inputs_embeds,
        "input_positions": self.input_positions,
        "encoder_input_tokens": self.encoder_input_tokens,
        "encoder_input_positions": self.encoder_input_positions,
        "virtual_engine": self.virtual_engine,
        "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
        "finished_requests_ids": self.finished_requests_ids,
        "multi_modal_kwargs": self.multi_modal_kwargs,
    }
    _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
    _add_sampling_metadata_broadcastable_dict(tensor_dict,
                                              self.sampling_metadata)
    return tensor_dict

from_broadcasted_tensor_dict classmethod

from_broadcasted_tensor_dict(
    tensor_dict: Dict[str, Any],
    attn_backend: Optional[AttentionBackend] = None,
) -> EncoderDecoderModelInput
Source code in vllm/worker/enc_dec_model_runner.py
@classmethod
def from_broadcasted_tensor_dict(
    cls,
    tensor_dict: Dict[str, Any],
    attn_backend: Optional["AttentionBackend"] = None,
) -> "EncoderDecoderModelInput":
    return cast(
        EncoderDecoderModelInput,
        super().from_broadcasted_tensor_dict(tensor_dict, attn_backend))

EncoderDecoderModelRunner

Bases: GPUModelRunnerBase[EncoderDecoderModelInput]

Source code in vllm/worker/enc_dec_model_runner.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
class EncoderDecoderModelRunner(GPUModelRunnerBase[EncoderDecoderModelInput]):
    _model_input_cls: Type[EncoderDecoderModelInput] = (
        EncoderDecoderModelInput)
    _builder_cls: Type[ModelInputForGPUBuilder] = (ModelInputForGPUBuilder)

    def __init__(
        self,
        vllm_config: VllmConfig,
        kv_cache_dtype: Optional[str] = "auto",
        is_driver_worker: bool = False,
        input_registry: InputRegistry = INPUT_REGISTRY,
        mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
    ):
        '''
        EncoderDecoderModelRunner constructor.

        `lora_config` and `prompt_adapter_config` are
        unused (since these features are not yet supported for encoder/decoder
        models) but these arguments are present here for compatibility with 
        the base-class constructor.
        '''
        self._maybe_force_supported_attention_backend()

        super().__init__(
            vllm_config=vllm_config,
            kv_cache_dtype=kv_cache_dtype,
            is_driver_worker=is_driver_worker,
            input_registry=input_registry,
            mm_registry=mm_registry,
        )

        # Crash for unsupported encoder/scenarios
        assert_enc_dec_mr_supported_scenario(self)

    def _maybe_force_supported_attention_backend(self):
        '''
        Force vLLM to use the XFormers attention backend,
        which is currently the only supported option.
        '''

        def raise_backend_err():
            # The user has specified an attention backend override
            # which is invalid for encoder/decoder models
            raise NotImplementedError(STR_NOT_IMPL_ENC_DEC_BACKEND)

        maybe_env_var_forced_backend = get_env_variable_attn_backend()
        maybe_global_forced_backend = get_global_forced_attn_backend()
        is_forced_by_global = maybe_global_forced_backend is not None
        is_forced_by_env_var = maybe_env_var_forced_backend is not None
        if is_forced_by_global:  # noqa: SIM102
            # Backend override enforced by global variable takes
            # precedence over vLLM backend environment variable.
            if maybe_global_forced_backend not in\
                 [_Backend.XFORMERS, _Backend.FLASH_ATTN]:
                raise_backend_err()
        elif is_forced_by_env_var:  # noqa: SIM102
            # Backend override enforced by vLLM backend
            # environment variable
            if maybe_env_var_forced_backend not in\
                 [_Backend.XFORMERS, _Backend.FLASH_ATTN]:
                raise_backend_err()

    def _list_to_int32_tensor(
        self,
        _list: List[int],
    ) -> torch.Tensor:
        return torch.tensor(_list, dtype=torch.int32, device=self.device)

    def _list_to_long_tensor(
        self,
        _list: List[int],
    ) -> torch.Tensor:
        return torch.tensor(_list, dtype=torch.long, device=self.device)

    def _empty_int32_tensor(self) -> torch.Tensor:
        return self._list_to_int32_tensor([])

    def _empty_long_tensor(self) -> torch.Tensor:
        return self._list_to_long_tensor([])

    @torch.inference_mode()
    def execute_model(
        self,
        model_input: EncoderDecoderModelInput,
        kv_caches: List[torch.Tensor],
        intermediate_tensors: Optional[IntermediateTensors] = None,
        num_steps: int = 1,
    ) -> Optional[List[PoolerOutput]]:
        if num_steps > 1:
            raise ValueError("num_steps > 1 is not supported in "
                             "EncoderDecoderModelRunner")
        if self.lora_config:
            assert model_input.lora_requests is not None
            assert model_input.lora_mapping is not None
            self.set_active_loras(model_input.lora_requests,
                                  model_input.lora_mapping)
        if (model_input.attn_metadata is not None
                and model_input.attn_metadata.prefill_metadata is None
                and model_input.attn_metadata.decode_metadata.use_cuda_graph):
            if model_input.inputs_embeds is None:
                assert model_input.input_tokens is not None
                graph_batch_size = model_input.input_tokens.shape[0]
                model_executable = (
                    self.graph_runners[model_input.virtual_engine][(
                        graph_batch_size, False)])
            else:
                graph_batch_size = model_input.inputs_embeds.shape[0]
                model_executable = (
                    self.graph_runners[model_input.virtual_engine][(
                        graph_batch_size, True)])
        else:
            model_executable = self.model

        seqlen_agnostic_kwargs = {
            "finished_requests_ids": model_input.finished_requests_ids,
            "request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
        } if self.has_inner_state else {}

        multi_modal_kwargs = model_input.multi_modal_kwargs or {}
        with set_forward_context(model_input.attn_metadata, self.vllm_config,
                                 model_input.virtual_engine):
            hidden_or_intermediate_states = model_executable(
                input_ids=model_input.input_tokens,
                inputs_embeds=model_input.inputs_embeds,
                positions=model_input.input_positions,
                encoder_input_ids=model_input.encoder_input_tokens,
                encoder_positions=model_input.encoder_input_positions,
                intermediate_tensors=intermediate_tensors,
                **MultiModalKwargs.as_kwargs(
                    multi_modal_kwargs,
                    device=self.device,
                ),
                **seqlen_agnostic_kwargs,
            )

        logits = self.model.compute_logits(hidden_or_intermediate_states,
                                           model_input.sampling_metadata)

        if not self.is_driver_worker:
            return []

        if model_input.async_callback is not None:
            model_input.async_callback()

        # Sample the next token.
        output: SamplerOutput = self.sampler(
            logits=logits,
            sampling_metadata=model_input.sampling_metadata,
        )

        return [output]

    def make_model_input_from_broadcasted_tensor_dict(
            self, tensor_dict: Dict[str, Any]) -> EncoderDecoderModelInput:
        return EncoderDecoderModelInput.from_broadcasted_tensor_dict(
            tensor_dict,
            attn_backend=self.attn_backend,
        )

    def prepare_model_input(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        virtual_engine: int = 0,
        finished_requests_ids: Optional[List[str]] = None
    ) -> EncoderDecoderModelInput:
        """Prepare the model input based on a given sequence group, including
        metadata for the sampling step.

        Since chunked prefill is not supported for encoder/decoder models,
        `input_tokens` is assumed to be either entirely prefill tokens or
        entirely decode tokens.

        """
        model_input = self._prepare_model_input_tensors(
            seq_group_metadata_list, finished_requests_ids)
        (
            attn_metadata,
            encoder_input_tokens_tensor,
            encoder_input_positions_tensor,
        ) = (self._prepare_encoder_model_input_tensors(seq_group_metadata_list,
                                                       model_input))
        # Inject attn_metadata encoder/cross-attention fields &
        # encoder input tokens/positions into model_input.
        # Frozen dataclass fields cannot be modified, so use
        # dataclasses.replace to construct a new model input
        # instance.
        model_input = dataclasses.replace(
            model_input,
            attn_metadata=attn_metadata,
            encoder_input_tokens=encoder_input_tokens_tensor,
            encoder_input_positions=encoder_input_positions_tensor,
        )

        generators = self.get_generators(finished_requests_ids)
        sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
                                                     model_input.seq_lens,
                                                     model_input.query_lens,
                                                     self.device,
                                                     self.pin_memory,
                                                     generators=generators)
        is_prompt = (seq_group_metadata_list[0].is_prompt
                     if seq_group_metadata_list else None)
        return dataclasses.replace(model_input,
                                   sampling_metadata=sampling_metadata,
                                   is_prompt=is_prompt,
                                   virtual_engine=virtual_engine)

    @torch.inference_mode()
    def profile_run(self) -> None:
        # Enable top-k sampling to reflect the accurate memory usage.
        sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
        max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
        max_num_seqs = self.scheduler_config.max_num_seqs

        # This represents the maximum number of different requests
        # that will have unique loras, and therefore the max amount of
        # memory consumption. Create dummy lora request copies from the
        # lora request passed in, which contains a lora from the lora
        # warmup path.
        dummy_lora_requests: List[LoRARequest] = []
        dummy_lora_requests_per_seq: List[LoRARequest] = []
        if self.lora_config:
            dummy_lora_requests = self._add_dummy_loras(
                self.lora_config.max_loras)
            assert len(dummy_lora_requests) == self.lora_config.max_loras
            dummy_lora_requests_per_seq = [
                dummy_lora_requests[idx % len(dummy_lora_requests)]
                for idx in range(max_num_seqs)
            ]

        # Profile memory usage with max_num_sequences sequences and the total
        # number of tokens equal to max_num_batched_tokens.
        seqs: List[SequenceGroupMetadata] = []

        max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
            self.model_config)
        if max_mm_tokens > 0:
            logger.info("Starting profile run for multi-modal models.")

        batch_size = 0
        for group_id in range(max_num_seqs):
            seq_len = (max_num_batched_tokens // max_num_seqs +
                       (group_id < max_num_batched_tokens % max_num_seqs))
            batch_size += seq_len

            decoder_dummy_data = self.input_registry \
                .dummy_data_for_profiling(self.model_config,
                                          seq_len,
                                          self.mm_registry,
                                          is_encoder_data=False)
            encoder_dummy_data = self.input_registry \
                .dummy_data_for_profiling(self.model_config,
                                          seq_len,
                                          self.mm_registry,
                                          is_encoder_data=True)

            # Having more tokens is over-conservative but otherwise fine
            assert len(
                decoder_dummy_data.seq_data.prompt_token_ids
            ) >= seq_len, (
                f"Expected at least {seq_len} dummy tokens for profiling, "
                f"but got: {len(decoder_dummy_data.seq_data.prompt_token_ids)}"
            )

            assert decoder_dummy_data.multi_modal_data is None or \
            encoder_dummy_data.multi_modal_data is None, (
                "Multi-modal data can't be provided in both encoder and decoder"
            )

            seq = SequenceGroupMetadata(
                request_id=str(group_id),
                is_prompt=True,
                seq_data={group_id: decoder_dummy_data.seq_data},
                sampling_params=sampling_params,
                block_tables=None,
                encoder_seq_data=encoder_dummy_data.seq_data,
                cross_block_table=None,
                lora_request=dummy_lora_requests_per_seq[group_id]
                if dummy_lora_requests_per_seq else None,
                multi_modal_data=decoder_dummy_data.multi_modal_data
                or encoder_dummy_data.multi_modal_data,
                multi_modal_placeholders=decoder_dummy_data.
                multi_modal_placeholders
                or encoder_dummy_data.multi_modal_placeholders)
            seqs.append(seq)

        finished_requests_ids = [seq.request_id for seq in seqs]
        model_input = self.prepare_model_input(
            seqs, finished_requests_ids=finished_requests_ids)
        intermediate_tensors = None
        self.execute_model(model_input, None, intermediate_tensors)
        torch.cuda.synchronize()
        return

    def _prepare_encoder_model_input_tensors(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        model_input: EncoderDecoderModelInput,
    ) -> Tuple[AttentionMetadata, Optional[torch.Tensor],
               Optional[torch.Tensor]]:
        """Helper method to prepare the encoder- and cross-attn-related
        model inputs based on a given sequence group. These additional inputs
        are used to augment an already-computed `EncoderDecoderModelInput`
        data structure which already has decoder-related model inputs
        populated.

        Sets the following attn_metadata fields:
        * `num_encoder_tokens`
        * `encoder_seq_lens`
        * `encoder_seq_lens_tensor`
        * `max_encoder_seq_len`
        * `cross_slot_mapping`
        * `cross_block_tables`

        Constructs a new model inputs data structure, based on
        (1) the existing fields in the `model_inputs` argument,
        and (2) the following additional fields which are
        computed (or in the case of `attn_metadata`, updated) 
        by this function:
        * attn_metadata
        * encoder_input_tokens
        * encoder_input_positions

        Arguments:

        * seq_group_metadata_list: list of sequence groups for which to
                                   compute inputs
        * model_inputs: model inputs data structure with decoder-oriented
                        fields already computed.

        Return:

        * Updated model inputs data structure
        """

        if len(seq_group_metadata_list) == 0:
            return (model_input.attn_metadata, None, None)

        # Since we are not supporting chunked prefill either the entire
        # batch is prefill or it is decode
        is_prompt = seq_group_metadata_list[0].is_prompt

        # Build encoder inputs
        encoder_seq_lens: List[int] = []
        if is_prompt:
            # Prefill phase.
            cross_block_tables = self._empty_int32_tensor().view(
                len(seq_group_metadata_list), -1)

            # Extract input tokens/positions, cross-attention slot-mapping,
            # & seq len from each sequence group metadata
            (
                encoder_input_tokens,
                encoder_input_positions,
                cross_slot_mapping,
            ) = (
                [],
                [],
                [],
            )
            for seq_group_metadata in seq_group_metadata_list:
                # Build seq lens
                seq_len = seq_group_metadata.encoder_seq_data.get_len()
                token_ids = seq_group_metadata.encoder_seq_data.get_token_ids()
                encoder_seq_lens.append(seq_len)

                # Build slot mapping
                is_profile_run = (seq_group_metadata.block_tables is None)
                if is_profile_run:
                    # During memory profiling, the block tables are not
                    # initialized yet. In this case, we just use a dummy
                    # slot mapping.
                    # In embeddings, the block tables are {seq_id: None}.
                    cross_slot_mapping.extend([PAD_SLOT_ID] * seq_len)
                else:
                    for i in range(0, seq_len):
                        block_number = seq_group_metadata.cross_block_table[
                            i // self.block_size]
                        block_offset = i % self.block_size
                        slot = block_number * self.block_size + block_offset
                        cross_slot_mapping.append(slot)

                # Build encoder input tokens
                encoder_input_tokens.extend(token_ids)
                encoder_input_positions.extend(list(range(0, seq_len)))

            # Convert tokens/positions & cross-attention
            # slot-mapping to encoder input tensors
            encoder_input_tokens_tensor = self._list_to_long_tensor(
                encoder_input_tokens)
            encoder_input_positions_tensor = self._list_to_long_tensor(
                encoder_input_positions)
            cross_slot_mapping_tensor = self._list_to_long_tensor(
                cross_slot_mapping)

        else:
            # Decode phase.
            encoder_input_tokens_tensor = self._empty_long_tensor()
            encoder_input_positions_tensor = self._empty_long_tensor()
            cross_slot_mapping_tensor = self._empty_long_tensor()
            # Extract cross-attention block tables &
            # seq len from each sequence group metadata.
            # Cross-attention block tables are empty
            # during vLLM memory profiling.
            cross_block_tables = []
            for seq_group_metadata in seq_group_metadata_list:
                for _ in range(len(seq_group_metadata.seq_data)):
                    encoder_seq_lens.append(
                        seq_group_metadata.encoder_seq_data.get_len())
                    cross_block_table = seq_group_metadata.cross_block_table
                    cross_block_tables.append([] if (
                        cross_block_table is None) else cross_block_table)

            if (model_input.attn_metadata is not None
                    and model_input.attn_metadata.use_cuda_graph):
                # We will be using CUDA graph replay for this decode.
                max_len_of_block_table = self.get_max_block_per_batch()
                batch_size = len(encoder_seq_lens)
                graph_batch_size = self.vllm_config.pad_for_cudagraph(
                    batch_size)
                assert graph_batch_size >= batch_size
                cuda_graph_pad_size = graph_batch_size - batch_size
                # extend the cross_block_tables and encoder_seq_lens to match
                # the graph_batch_size.
                cross_block_tables.extend([[]
                                           for _ in range(cuda_graph_pad_size)
                                           ])
                encoder_seq_lens.extend(
                    itertools.repeat(1, cuda_graph_pad_size))

            else:
                max_len_of_block_table = max(
                    len(block_table) for block_table in cross_block_tables)

            cross_block_tables = make_tensor_with_pad(
                cross_block_tables,
                max_len=max_len_of_block_table,
                pad=0,
                dtype=torch.int32,
                device=self.device,
            )

        # Compute encoder sequence lengths & encoder
        # sequence starting offset tensors
        max_encoder_seq_len = max(encoder_seq_lens, default=0)
        encoder_seq_lens_tensor = self._list_to_int32_tensor(encoder_seq_lens)
        encoder_seq_start_loc = torch.zeros(encoder_seq_lens_tensor.shape[0] +
                                            1,
                                            dtype=torch.int32,
                                            device=self.device)
        torch.cumsum(encoder_seq_lens_tensor,
                     dim=0,
                     dtype=encoder_seq_start_loc.dtype,
                     out=encoder_seq_start_loc[1:])

        # Update attention metadata with encoder-oriented attributes
        attn_metadata = model_input.attn_metadata
        assert attn_metadata is not None
        (
            attn_metadata.num_encoder_tokens,
            attn_metadata.encoder_seq_lens,
            attn_metadata.encoder_seq_lens_tensor,
            attn_metadata.max_encoder_seq_len,
            attn_metadata.encoder_seq_start_loc,
            attn_metadata.cross_slot_mapping,
            attn_metadata.cross_block_tables,
        ) = (
            sum(encoder_seq_lens),
            encoder_seq_lens,
            encoder_seq_lens_tensor,
            max_encoder_seq_len,
            encoder_seq_start_loc,
            cross_slot_mapping_tensor,
            cross_block_tables,
        )

        return (attn_metadata, encoder_input_tokens_tensor,
                encoder_input_positions_tensor)

_builder_cls class-attribute instance-attribute

_model_input_cls class-attribute instance-attribute

__init__

__init__(
    vllm_config: VllmConfig,
    kv_cache_dtype: Optional[str] = "auto",
    is_driver_worker: bool = False,
    input_registry: InputRegistry = INPUT_REGISTRY,
    mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
)

EncoderDecoderModelRunner constructor.

lora_config and prompt_adapter_config are unused (since these features are not yet supported for encoder/decoder models) but these arguments are present here for compatibility with the base-class constructor.

Source code in vllm/worker/enc_dec_model_runner.py
def __init__(
    self,
    vllm_config: VllmConfig,
    kv_cache_dtype: Optional[str] = "auto",
    is_driver_worker: bool = False,
    input_registry: InputRegistry = INPUT_REGISTRY,
    mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
):
    '''
    EncoderDecoderModelRunner constructor.

    `lora_config` and `prompt_adapter_config` are
    unused (since these features are not yet supported for encoder/decoder
    models) but these arguments are present here for compatibility with 
    the base-class constructor.
    '''
    self._maybe_force_supported_attention_backend()

    super().__init__(
        vllm_config=vllm_config,
        kv_cache_dtype=kv_cache_dtype,
        is_driver_worker=is_driver_worker,
        input_registry=input_registry,
        mm_registry=mm_registry,
    )

    # Crash for unsupported encoder/scenarios
    assert_enc_dec_mr_supported_scenario(self)

_empty_int32_tensor

_empty_int32_tensor() -> Tensor
Source code in vllm/worker/enc_dec_model_runner.py
def _empty_int32_tensor(self) -> torch.Tensor:
    return self._list_to_int32_tensor([])

_empty_long_tensor

_empty_long_tensor() -> Tensor
Source code in vllm/worker/enc_dec_model_runner.py
def _empty_long_tensor(self) -> torch.Tensor:
    return self._list_to_long_tensor([])

_list_to_int32_tensor

_list_to_int32_tensor(_list: List[int]) -> Tensor
Source code in vllm/worker/enc_dec_model_runner.py
def _list_to_int32_tensor(
    self,
    _list: List[int],
) -> torch.Tensor:
    return torch.tensor(_list, dtype=torch.int32, device=self.device)

_list_to_long_tensor

_list_to_long_tensor(_list: List[int]) -> Tensor
Source code in vllm/worker/enc_dec_model_runner.py
def _list_to_long_tensor(
    self,
    _list: List[int],
) -> torch.Tensor:
    return torch.tensor(_list, dtype=torch.long, device=self.device)

_maybe_force_supported_attention_backend

_maybe_force_supported_attention_backend()

Force vLLM to use the XFormers attention backend, which is currently the only supported option.

Source code in vllm/worker/enc_dec_model_runner.py
def _maybe_force_supported_attention_backend(self):
    '''
    Force vLLM to use the XFormers attention backend,
    which is currently the only supported option.
    '''

    def raise_backend_err():
        # The user has specified an attention backend override
        # which is invalid for encoder/decoder models
        raise NotImplementedError(STR_NOT_IMPL_ENC_DEC_BACKEND)

    maybe_env_var_forced_backend = get_env_variable_attn_backend()
    maybe_global_forced_backend = get_global_forced_attn_backend()
    is_forced_by_global = maybe_global_forced_backend is not None
    is_forced_by_env_var = maybe_env_var_forced_backend is not None
    if is_forced_by_global:  # noqa: SIM102
        # Backend override enforced by global variable takes
        # precedence over vLLM backend environment variable.
        if maybe_global_forced_backend not in\
             [_Backend.XFORMERS, _Backend.FLASH_ATTN]:
            raise_backend_err()
    elif is_forced_by_env_var:  # noqa: SIM102
        # Backend override enforced by vLLM backend
        # environment variable
        if maybe_env_var_forced_backend not in\
             [_Backend.XFORMERS, _Backend.FLASH_ATTN]:
            raise_backend_err()

_prepare_encoder_model_input_tensors

_prepare_encoder_model_input_tensors(
    seq_group_metadata_list: List[SequenceGroupMetadata],
    model_input: EncoderDecoderModelInput,
) -> Tuple[
    AttentionMetadata, Optional[Tensor], Optional[Tensor]
]

Helper method to prepare the encoder- and cross-attn-related model inputs based on a given sequence group. These additional inputs are used to augment an already-computed EncoderDecoderModelInput data structure which already has decoder-related model inputs populated.

Sets the following attn_metadata fields: * num_encoder_tokens * encoder_seq_lens * encoder_seq_lens_tensor * max_encoder_seq_len * cross_slot_mapping * cross_block_tables

Constructs a new model inputs data structure, based on (1) the existing fields in the model_inputs argument, and (2) the following additional fields which are computed (or in the case of attn_metadata, updated) by this function: * attn_metadata * encoder_input_tokens * encoder_input_positions

Arguments:

  • seq_group_metadata_list: list of sequence groups for which to compute inputs
  • model_inputs: model inputs data structure with decoder-oriented fields already computed.

Return:

  • Updated model inputs data structure
Source code in vllm/worker/enc_dec_model_runner.py
def _prepare_encoder_model_input_tensors(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
    model_input: EncoderDecoderModelInput,
) -> Tuple[AttentionMetadata, Optional[torch.Tensor],
           Optional[torch.Tensor]]:
    """Helper method to prepare the encoder- and cross-attn-related
    model inputs based on a given sequence group. These additional inputs
    are used to augment an already-computed `EncoderDecoderModelInput`
    data structure which already has decoder-related model inputs
    populated.

    Sets the following attn_metadata fields:
    * `num_encoder_tokens`
    * `encoder_seq_lens`
    * `encoder_seq_lens_tensor`
    * `max_encoder_seq_len`
    * `cross_slot_mapping`
    * `cross_block_tables`

    Constructs a new model inputs data structure, based on
    (1) the existing fields in the `model_inputs` argument,
    and (2) the following additional fields which are
    computed (or in the case of `attn_metadata`, updated) 
    by this function:
    * attn_metadata
    * encoder_input_tokens
    * encoder_input_positions

    Arguments:

    * seq_group_metadata_list: list of sequence groups for which to
                               compute inputs
    * model_inputs: model inputs data structure with decoder-oriented
                    fields already computed.

    Return:

    * Updated model inputs data structure
    """

    if len(seq_group_metadata_list) == 0:
        return (model_input.attn_metadata, None, None)

    # Since we are not supporting chunked prefill either the entire
    # batch is prefill or it is decode
    is_prompt = seq_group_metadata_list[0].is_prompt

    # Build encoder inputs
    encoder_seq_lens: List[int] = []
    if is_prompt:
        # Prefill phase.
        cross_block_tables = self._empty_int32_tensor().view(
            len(seq_group_metadata_list), -1)

        # Extract input tokens/positions, cross-attention slot-mapping,
        # & seq len from each sequence group metadata
        (
            encoder_input_tokens,
            encoder_input_positions,
            cross_slot_mapping,
        ) = (
            [],
            [],
            [],
        )
        for seq_group_metadata in seq_group_metadata_list:
            # Build seq lens
            seq_len = seq_group_metadata.encoder_seq_data.get_len()
            token_ids = seq_group_metadata.encoder_seq_data.get_token_ids()
            encoder_seq_lens.append(seq_len)

            # Build slot mapping
            is_profile_run = (seq_group_metadata.block_tables is None)
            if is_profile_run:
                # During memory profiling, the block tables are not
                # initialized yet. In this case, we just use a dummy
                # slot mapping.
                # In embeddings, the block tables are {seq_id: None}.
                cross_slot_mapping.extend([PAD_SLOT_ID] * seq_len)
            else:
                for i in range(0, seq_len):
                    block_number = seq_group_metadata.cross_block_table[
                        i // self.block_size]
                    block_offset = i % self.block_size
                    slot = block_number * self.block_size + block_offset
                    cross_slot_mapping.append(slot)

            # Build encoder input tokens
            encoder_input_tokens.extend(token_ids)
            encoder_input_positions.extend(list(range(0, seq_len)))

        # Convert tokens/positions & cross-attention
        # slot-mapping to encoder input tensors
        encoder_input_tokens_tensor = self._list_to_long_tensor(
            encoder_input_tokens)
        encoder_input_positions_tensor = self._list_to_long_tensor(
            encoder_input_positions)
        cross_slot_mapping_tensor = self._list_to_long_tensor(
            cross_slot_mapping)

    else:
        # Decode phase.
        encoder_input_tokens_tensor = self._empty_long_tensor()
        encoder_input_positions_tensor = self._empty_long_tensor()
        cross_slot_mapping_tensor = self._empty_long_tensor()
        # Extract cross-attention block tables &
        # seq len from each sequence group metadata.
        # Cross-attention block tables are empty
        # during vLLM memory profiling.
        cross_block_tables = []
        for seq_group_metadata in seq_group_metadata_list:
            for _ in range(len(seq_group_metadata.seq_data)):
                encoder_seq_lens.append(
                    seq_group_metadata.encoder_seq_data.get_len())
                cross_block_table = seq_group_metadata.cross_block_table
                cross_block_tables.append([] if (
                    cross_block_table is None) else cross_block_table)

        if (model_input.attn_metadata is not None
                and model_input.attn_metadata.use_cuda_graph):
            # We will be using CUDA graph replay for this decode.
            max_len_of_block_table = self.get_max_block_per_batch()
            batch_size = len(encoder_seq_lens)
            graph_batch_size = self.vllm_config.pad_for_cudagraph(
                batch_size)
            assert graph_batch_size >= batch_size
            cuda_graph_pad_size = graph_batch_size - batch_size
            # extend the cross_block_tables and encoder_seq_lens to match
            # the graph_batch_size.
            cross_block_tables.extend([[]
                                       for _ in range(cuda_graph_pad_size)
                                       ])
            encoder_seq_lens.extend(
                itertools.repeat(1, cuda_graph_pad_size))

        else:
            max_len_of_block_table = max(
                len(block_table) for block_table in cross_block_tables)

        cross_block_tables = make_tensor_with_pad(
            cross_block_tables,
            max_len=max_len_of_block_table,
            pad=0,
            dtype=torch.int32,
            device=self.device,
        )

    # Compute encoder sequence lengths & encoder
    # sequence starting offset tensors
    max_encoder_seq_len = max(encoder_seq_lens, default=0)
    encoder_seq_lens_tensor = self._list_to_int32_tensor(encoder_seq_lens)
    encoder_seq_start_loc = torch.zeros(encoder_seq_lens_tensor.shape[0] +
                                        1,
                                        dtype=torch.int32,
                                        device=self.device)
    torch.cumsum(encoder_seq_lens_tensor,
                 dim=0,
                 dtype=encoder_seq_start_loc.dtype,
                 out=encoder_seq_start_loc[1:])

    # Update attention metadata with encoder-oriented attributes
    attn_metadata = model_input.attn_metadata
    assert attn_metadata is not None
    (
        attn_metadata.num_encoder_tokens,
        attn_metadata.encoder_seq_lens,
        attn_metadata.encoder_seq_lens_tensor,
        attn_metadata.max_encoder_seq_len,
        attn_metadata.encoder_seq_start_loc,
        attn_metadata.cross_slot_mapping,
        attn_metadata.cross_block_tables,
    ) = (
        sum(encoder_seq_lens),
        encoder_seq_lens,
        encoder_seq_lens_tensor,
        max_encoder_seq_len,
        encoder_seq_start_loc,
        cross_slot_mapping_tensor,
        cross_block_tables,
    )

    return (attn_metadata, encoder_input_tokens_tensor,
            encoder_input_positions_tensor)

execute_model

execute_model(
    model_input: EncoderDecoderModelInput,
    kv_caches: List[Tensor],
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    num_steps: int = 1,
) -> Optional[List[PoolerOutput]]
Source code in vllm/worker/enc_dec_model_runner.py
@torch.inference_mode()
def execute_model(
    self,
    model_input: EncoderDecoderModelInput,
    kv_caches: List[torch.Tensor],
    intermediate_tensors: Optional[IntermediateTensors] = None,
    num_steps: int = 1,
) -> Optional[List[PoolerOutput]]:
    if num_steps > 1:
        raise ValueError("num_steps > 1 is not supported in "
                         "EncoderDecoderModelRunner")
    if self.lora_config:
        assert model_input.lora_requests is not None
        assert model_input.lora_mapping is not None
        self.set_active_loras(model_input.lora_requests,
                              model_input.lora_mapping)
    if (model_input.attn_metadata is not None
            and model_input.attn_metadata.prefill_metadata is None
            and model_input.attn_metadata.decode_metadata.use_cuda_graph):
        if model_input.inputs_embeds is None:
            assert model_input.input_tokens is not None
            graph_batch_size = model_input.input_tokens.shape[0]
            model_executable = (
                self.graph_runners[model_input.virtual_engine][(
                    graph_batch_size, False)])
        else:
            graph_batch_size = model_input.inputs_embeds.shape[0]
            model_executable = (
                self.graph_runners[model_input.virtual_engine][(
                    graph_batch_size, True)])
    else:
        model_executable = self.model

    seqlen_agnostic_kwargs = {
        "finished_requests_ids": model_input.finished_requests_ids,
        "request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
    } if self.has_inner_state else {}

    multi_modal_kwargs = model_input.multi_modal_kwargs or {}
    with set_forward_context(model_input.attn_metadata, self.vllm_config,
                             model_input.virtual_engine):
        hidden_or_intermediate_states = model_executable(
            input_ids=model_input.input_tokens,
            inputs_embeds=model_input.inputs_embeds,
            positions=model_input.input_positions,
            encoder_input_ids=model_input.encoder_input_tokens,
            encoder_positions=model_input.encoder_input_positions,
            intermediate_tensors=intermediate_tensors,
            **MultiModalKwargs.as_kwargs(
                multi_modal_kwargs,
                device=self.device,
            ),
            **seqlen_agnostic_kwargs,
        )

    logits = self.model.compute_logits(hidden_or_intermediate_states,
                                       model_input.sampling_metadata)

    if not self.is_driver_worker:
        return []

    if model_input.async_callback is not None:
        model_input.async_callback()

    # Sample the next token.
    output: SamplerOutput = self.sampler(
        logits=logits,
        sampling_metadata=model_input.sampling_metadata,
    )

    return [output]

make_model_input_from_broadcasted_tensor_dict

make_model_input_from_broadcasted_tensor_dict(
    tensor_dict: Dict[str, Any],
) -> EncoderDecoderModelInput
Source code in vllm/worker/enc_dec_model_runner.py
def make_model_input_from_broadcasted_tensor_dict(
        self, tensor_dict: Dict[str, Any]) -> EncoderDecoderModelInput:
    return EncoderDecoderModelInput.from_broadcasted_tensor_dict(
        tensor_dict,
        attn_backend=self.attn_backend,
    )

prepare_model_input

prepare_model_input(
    seq_group_metadata_list: List[SequenceGroupMetadata],
    virtual_engine: int = 0,
    finished_requests_ids: Optional[List[str]] = None,
) -> EncoderDecoderModelInput

Prepare the model input based on a given sequence group, including metadata for the sampling step.

Since chunked prefill is not supported for encoder/decoder models, input_tokens is assumed to be either entirely prefill tokens or entirely decode tokens.

Source code in vllm/worker/enc_dec_model_runner.py
def prepare_model_input(
    self,
    seq_group_metadata_list: List[SequenceGroupMetadata],
    virtual_engine: int = 0,
    finished_requests_ids: Optional[List[str]] = None
) -> EncoderDecoderModelInput:
    """Prepare the model input based on a given sequence group, including
    metadata for the sampling step.

    Since chunked prefill is not supported for encoder/decoder models,
    `input_tokens` is assumed to be either entirely prefill tokens or
    entirely decode tokens.

    """
    model_input = self._prepare_model_input_tensors(
        seq_group_metadata_list, finished_requests_ids)
    (
        attn_metadata,
        encoder_input_tokens_tensor,
        encoder_input_positions_tensor,
    ) = (self._prepare_encoder_model_input_tensors(seq_group_metadata_list,
                                                   model_input))
    # Inject attn_metadata encoder/cross-attention fields &
    # encoder input tokens/positions into model_input.
    # Frozen dataclass fields cannot be modified, so use
    # dataclasses.replace to construct a new model input
    # instance.
    model_input = dataclasses.replace(
        model_input,
        attn_metadata=attn_metadata,
        encoder_input_tokens=encoder_input_tokens_tensor,
        encoder_input_positions=encoder_input_positions_tensor,
    )

    generators = self.get_generators(finished_requests_ids)
    sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
                                                 model_input.seq_lens,
                                                 model_input.query_lens,
                                                 self.device,
                                                 self.pin_memory,
                                                 generators=generators)
    is_prompt = (seq_group_metadata_list[0].is_prompt
                 if seq_group_metadata_list else None)
    return dataclasses.replace(model_input,
                               sampling_metadata=sampling_metadata,
                               is_prompt=is_prompt,
                               virtual_engine=virtual_engine)

profile_run

profile_run() -> None
Source code in vllm/worker/enc_dec_model_runner.py
@torch.inference_mode()
def profile_run(self) -> None:
    # Enable top-k sampling to reflect the accurate memory usage.
    sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
    max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
    max_num_seqs = self.scheduler_config.max_num_seqs

    # This represents the maximum number of different requests
    # that will have unique loras, and therefore the max amount of
    # memory consumption. Create dummy lora request copies from the
    # lora request passed in, which contains a lora from the lora
    # warmup path.
    dummy_lora_requests: List[LoRARequest] = []
    dummy_lora_requests_per_seq: List[LoRARequest] = []
    if self.lora_config:
        dummy_lora_requests = self._add_dummy_loras(
            self.lora_config.max_loras)
        assert len(dummy_lora_requests) == self.lora_config.max_loras
        dummy_lora_requests_per_seq = [
            dummy_lora_requests[idx % len(dummy_lora_requests)]
            for idx in range(max_num_seqs)
        ]

    # Profile memory usage with max_num_sequences sequences and the total
    # number of tokens equal to max_num_batched_tokens.
    seqs: List[SequenceGroupMetadata] = []

    max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
        self.model_config)
    if max_mm_tokens > 0:
        logger.info("Starting profile run for multi-modal models.")

    batch_size = 0
    for group_id in range(max_num_seqs):
        seq_len = (max_num_batched_tokens // max_num_seqs +
                   (group_id < max_num_batched_tokens % max_num_seqs))
        batch_size += seq_len

        decoder_dummy_data = self.input_registry \
            .dummy_data_for_profiling(self.model_config,
                                      seq_len,
                                      self.mm_registry,
                                      is_encoder_data=False)
        encoder_dummy_data = self.input_registry \
            .dummy_data_for_profiling(self.model_config,
                                      seq_len,
                                      self.mm_registry,
                                      is_encoder_data=True)

        # Having more tokens is over-conservative but otherwise fine
        assert len(
            decoder_dummy_data.seq_data.prompt_token_ids
        ) >= seq_len, (
            f"Expected at least {seq_len} dummy tokens for profiling, "
            f"but got: {len(decoder_dummy_data.seq_data.prompt_token_ids)}"
        )

        assert decoder_dummy_data.multi_modal_data is None or \
        encoder_dummy_data.multi_modal_data is None, (
            "Multi-modal data can't be provided in both encoder and decoder"
        )

        seq = SequenceGroupMetadata(
            request_id=str(group_id),
            is_prompt=True,
            seq_data={group_id: decoder_dummy_data.seq_data},
            sampling_params=sampling_params,
            block_tables=None,
            encoder_seq_data=encoder_dummy_data.seq_data,
            cross_block_table=None,
            lora_request=dummy_lora_requests_per_seq[group_id]
            if dummy_lora_requests_per_seq else None,
            multi_modal_data=decoder_dummy_data.multi_modal_data
            or encoder_dummy_data.multi_modal_data,
            multi_modal_placeholders=decoder_dummy_data.
            multi_modal_placeholders
            or encoder_dummy_data.multi_modal_placeholders)
        seqs.append(seq)

    finished_requests_ids = [seq.request_id for seq in seqs]
    model_input = self.prepare_model_input(
        seqs, finished_requests_ids=finished_requests_ids)
    intermediate_tensors = None
    self.execute_model(model_input, None, intermediate_tensors)
    torch.cuda.synchronize()
    return