Skip to content

vllm.model_executor.layers.quantization.quark.schemes.quark_w8a8_fp8

__all__ module-attribute

__all__ = ['QuarkW8A8Fp8']

QuarkW8A8Fp8

Bases: QuarkScheme

Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py
class QuarkW8A8Fp8(QuarkScheme):

    def __init__(self, weight_config: dict[str, Any],
                 input_config: Optional[dict[str, Any]]):
        self.weight_qscheme = cast(str, weight_config.get("qscheme"))
        self.is_static_input_scheme: bool = False
        self.input_qscheme: Optional[str] = None
        if input_config is not None:
            self.is_static_input_scheme = not cast(
                bool, input_config.get("is_dynamic"))
            self.input_qscheme = cast(str, input_config.get("qscheme"))
        self.use_per_token_if_dynamic = (not self.is_static_input_scheme \
            and self.input_qscheme == "per_channel")
        self.fp8_linear = Fp8LinearOp(
            use_per_token_if_dynamic=self.use_per_token_if_dynamic)
        self.out_dtype = torch.get_default_dtype()

    @classmethod
    def get_min_capability(cls) -> int:
        # lovelace and up
        return 89

    def process_weights_after_loading(self, layer) -> None:
        # If per tensor, when we have a fused module (e.g. QKV) with per
        # tensor scales (thus N scales being passed to the kernel),
        # requantize so we can always run per tensor
        if self.weight_qscheme == "per_tensor":
            if current_platform.is_rocm():
                input_scale = getattr(layer, 'input_scale', None)
                weight, max_w_scale, input_scale = normalize_e4m3fn_to_e4m3fnuz(
                    weight=layer.weight,
                    weight_scale=layer.weight_scale,
                    input_scale=input_scale)
                if input_scale is not None:
                    layer.input_scale = Parameter(input_scale,
                                                  requires_grad=False)
            else:
                max_w_scale = layer.weight_scale
                weight = layer.weight

            max_w_scale, weight = requantize_with_max_scale(
                weight=weight,
                weight_scale=max_w_scale,
                logical_widths=layer.logical_widths,
            )

            layer.weight = Parameter(weight.t(), requires_grad=False)
            layer.weight_scale = Parameter(max_w_scale, requires_grad=False)

        # If channelwise, scales are already lined up, so just transpose.
        elif self.weight_qscheme == "per_channel":
            weight = layer.weight

            if current_platform.is_fp8_fnuz():
                input_scale = getattr(layer, 'input_scale', None)
                weight, weight_scale, input_scale = \
                    normalize_e4m3fn_to_e4m3fnuz(
                        weight=weight,
                        weight_scale=layer.weight_scale,
                        input_scale=input_scale)
                if input_scale is not None:
                    layer.input_scale = Parameter(input_scale,
                                                  requires_grad=False)
            else:
                weight_scale = layer.weight_scale.data
            if self.use_per_token_if_dynamic:
                weight_scale = weight_scale.view(-1, 1)
            layer.weight = Parameter(weight.t(), requires_grad=False)
            # required by torch.compile to be torch.nn.Parameter
            layer.weight_scale = Parameter(weight_scale, requires_grad=False)

        else:
            raise ValueError(
                f"Unknown quantization scheme {self.weight_qscheme}")

        # INPUT SCALE
        if self.is_static_input_scheme:
            layer.input_scale = Parameter(layer.input_scale.max(),
                                          requires_grad=False)
        else:
            layer.input_scale = None

    def create_weights(self, layer: torch.nn.Module,
                       output_partition_sizes: list[int],
                       input_size_per_partition: int,
                       params_dtype: torch.dtype, weight_loader: Callable,
                       **kwargs):
        output_size_per_partition = sum(output_partition_sizes)
        layer.logical_widths = output_partition_sizes

        # WEIGHT
        weight = ModelWeightParameter(data=torch.empty(
            output_size_per_partition,
            input_size_per_partition,
            dtype=torch.float8_e4m3fn),
                                      input_dim=1,
                                      output_dim=0,
                                      weight_loader=weight_loader)
        layer.register_parameter("weight", weight)

        # WEIGHT SCALE
        # TODO: update create_xxx_parameter functions to return
        # the newly added parameters
        if self.weight_qscheme == "per_channel":
            weight_scale = ChannelQuantScaleParameter(
                data=torch.empty((sum(output_partition_sizes)),
                                 dtype=torch.float32),
                output_dim=0,
                weight_loader=weight_loader)
        else:
            assert self.weight_qscheme == "per_tensor"
            weight_scale = PerTensorScaleParameter(data=torch.empty(
                len(output_partition_sizes), dtype=torch.float32),
                                                   weight_loader=weight_loader)

        # min requirement for fp8 kernels
        weight_scale[:] = torch.finfo(torch.float32).min
        layer.register_parameter("weight_scale", weight_scale)

        # INPUT SCALE
        if self.is_static_input_scheme:
            input_scale = PerTensorScaleParameter(data=torch.empty(
                len(output_partition_sizes), dtype=torch.float32),
                                                  weight_loader=weight_loader)
            input_scale[:] = torch.finfo(torch.float32).min
            layer.register_parameter("input_scale", input_scale)

    def apply_weights(self,
                      layer: torch.nn.Module,
                      x: torch.Tensor,
                      bias: Optional[torch.Tensor] = None) -> torch.Tensor:

        return self.fp8_linear.apply(input=x,
                                     weight=layer.weight,
                                     weight_scale=layer.weight_scale,
                                     out_dtype=self.out_dtype,
                                     input_scale=layer.input_scale,
                                     bias=bias)

fp8_linear instance-attribute

fp8_linear = Fp8LinearOp(
    use_per_token_if_dynamic=use_per_token_if_dynamic
)

input_qscheme instance-attribute

input_qscheme: Optional[str] = None

is_static_input_scheme instance-attribute

is_static_input_scheme: bool = False

out_dtype instance-attribute

out_dtype = get_default_dtype()

use_per_token_if_dynamic instance-attribute

use_per_token_if_dynamic = (
    not is_static_input_scheme
    and input_qscheme == "per_channel"
)

weight_qscheme instance-attribute

weight_qscheme = cast(str, get('qscheme'))

__init__

__init__(
    weight_config: dict[str, Any],
    input_config: Optional[dict[str, Any]],
)
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py
def __init__(self, weight_config: dict[str, Any],
             input_config: Optional[dict[str, Any]]):
    self.weight_qscheme = cast(str, weight_config.get("qscheme"))
    self.is_static_input_scheme: bool = False
    self.input_qscheme: Optional[str] = None
    if input_config is not None:
        self.is_static_input_scheme = not cast(
            bool, input_config.get("is_dynamic"))
        self.input_qscheme = cast(str, input_config.get("qscheme"))
    self.use_per_token_if_dynamic = (not self.is_static_input_scheme \
        and self.input_qscheme == "per_channel")
    self.fp8_linear = Fp8LinearOp(
        use_per_token_if_dynamic=self.use_per_token_if_dynamic)
    self.out_dtype = torch.get_default_dtype()

apply_weights

apply_weights(
    layer: Module, x: Tensor, bias: Optional[Tensor] = None
) -> Tensor
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py
def apply_weights(self,
                  layer: torch.nn.Module,
                  x: torch.Tensor,
                  bias: Optional[torch.Tensor] = None) -> torch.Tensor:

    return self.fp8_linear.apply(input=x,
                                 weight=layer.weight,
                                 weight_scale=layer.weight_scale,
                                 out_dtype=self.out_dtype,
                                 input_scale=layer.input_scale,
                                 bias=bias)

create_weights

create_weights(
    layer: Module,
    output_partition_sizes: list[int],
    input_size_per_partition: int,
    params_dtype: dtype,
    weight_loader: Callable,
    **kwargs,
)
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py
def create_weights(self, layer: torch.nn.Module,
                   output_partition_sizes: list[int],
                   input_size_per_partition: int,
                   params_dtype: torch.dtype, weight_loader: Callable,
                   **kwargs):
    output_size_per_partition = sum(output_partition_sizes)
    layer.logical_widths = output_partition_sizes

    # WEIGHT
    weight = ModelWeightParameter(data=torch.empty(
        output_size_per_partition,
        input_size_per_partition,
        dtype=torch.float8_e4m3fn),
                                  input_dim=1,
                                  output_dim=0,
                                  weight_loader=weight_loader)
    layer.register_parameter("weight", weight)

    # WEIGHT SCALE
    # TODO: update create_xxx_parameter functions to return
    # the newly added parameters
    if self.weight_qscheme == "per_channel":
        weight_scale = ChannelQuantScaleParameter(
            data=torch.empty((sum(output_partition_sizes)),
                             dtype=torch.float32),
            output_dim=0,
            weight_loader=weight_loader)
    else:
        assert self.weight_qscheme == "per_tensor"
        weight_scale = PerTensorScaleParameter(data=torch.empty(
            len(output_partition_sizes), dtype=torch.float32),
                                               weight_loader=weight_loader)

    # min requirement for fp8 kernels
    weight_scale[:] = torch.finfo(torch.float32).min
    layer.register_parameter("weight_scale", weight_scale)

    # INPUT SCALE
    if self.is_static_input_scheme:
        input_scale = PerTensorScaleParameter(data=torch.empty(
            len(output_partition_sizes), dtype=torch.float32),
                                              weight_loader=weight_loader)
        input_scale[:] = torch.finfo(torch.float32).min
        layer.register_parameter("input_scale", input_scale)

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py
@classmethod
def get_min_capability(cls) -> int:
    # lovelace and up
    return 89

process_weights_after_loading

process_weights_after_loading(layer) -> None
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py
def process_weights_after_loading(self, layer) -> None:
    # If per tensor, when we have a fused module (e.g. QKV) with per
    # tensor scales (thus N scales being passed to the kernel),
    # requantize so we can always run per tensor
    if self.weight_qscheme == "per_tensor":
        if current_platform.is_rocm():
            input_scale = getattr(layer, 'input_scale', None)
            weight, max_w_scale, input_scale = normalize_e4m3fn_to_e4m3fnuz(
                weight=layer.weight,
                weight_scale=layer.weight_scale,
                input_scale=input_scale)
            if input_scale is not None:
                layer.input_scale = Parameter(input_scale,
                                              requires_grad=False)
        else:
            max_w_scale = layer.weight_scale
            weight = layer.weight

        max_w_scale, weight = requantize_with_max_scale(
            weight=weight,
            weight_scale=max_w_scale,
            logical_widths=layer.logical_widths,
        )

        layer.weight = Parameter(weight.t(), requires_grad=False)
        layer.weight_scale = Parameter(max_w_scale, requires_grad=False)

    # If channelwise, scales are already lined up, so just transpose.
    elif self.weight_qscheme == "per_channel":
        weight = layer.weight

        if current_platform.is_fp8_fnuz():
            input_scale = getattr(layer, 'input_scale', None)
            weight, weight_scale, input_scale = \
                normalize_e4m3fn_to_e4m3fnuz(
                    weight=weight,
                    weight_scale=layer.weight_scale,
                    input_scale=input_scale)
            if input_scale is not None:
                layer.input_scale = Parameter(input_scale,
                                              requires_grad=False)
        else:
            weight_scale = layer.weight_scale.data
        if self.use_per_token_if_dynamic:
            weight_scale = weight_scale.view(-1, 1)
        layer.weight = Parameter(weight.t(), requires_grad=False)
        # required by torch.compile to be torch.nn.Parameter
        layer.weight_scale = Parameter(weight_scale, requires_grad=False)

    else:
        raise ValueError(
            f"Unknown quantization scheme {self.weight_qscheme}")

    # INPUT SCALE
    if self.is_static_input_scheme:
        layer.input_scale = Parameter(layer.input_scale.max(),
                                      requires_grad=False)
    else:
        layer.input_scale = None